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ABSTRACT

Lung cancer (LC) is the most frequent cancer and the leading cause of cancer death in men in Russia and other countries. The
majority of new LC cases are diagnosed in patients over 65 years old, and the number is growing. LC is a heterogeneous group
of malignant tumors with different genetic and biological characteristics. Although smoking is considered the leading cause
of non-small cell lung cancer (NSCLC), genetic predisposition and environmental influences are responsible for 10-15 % of
cases. The tactics of treating patients with NSCLC alone has long been developed and, as a rule, does not cause any difficulties.
Surgery is the main treatment for the early NSCLC stages. However, as the disease progresses the risk of metastasis increases
and the effectiveness of the surgical treatment decreases sharply. The development of new medical therapy regimens and
the use of targeted drugs have improved the survival rate of LC patients with carcinogenic driver mutations. Personalized
treatments are becoming more available as sequencing technology develops. Targeted therapy undoubtedly improves the
outcomes of NSCLC patients with tumors carrying carcinogenic EGFR driver mutations, ALK fusion, and ROS1 rearrangement.
However, in addition to the main molecular targets, other genetic alterations have been identified and studied, such as: KRAS,
MET, RET, HER2 and NRG. Some of these mutations (BRAF and NTRK) are already available for targeted therapy. The list of
genetic alterations is growing and the molecular profiling of patients with NSCLC is expanding, which is very important in
the progression of the disease. Molecular genetic selection identifies specific groups of patients who benefit from targeted
therapy and provides insight into the potential mechanisms of resistance. Despite the progress made, further studies are
needed to clarify interactions with immune cells in the tumor microenvironment as factors affecting survival. In addition, it is
becoming increasingly important to study targeted therapy in the context of multimodal treatment. This review is devoted to
understanding genetic changes, searching for new genetic targets, problems and future directions of development of targeted
therapy in the treatment of patients with lung tumors.
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PE3IOME

Pak nerkoro (PJ1) 3aH1MaeT nepBoe MecTo B CTPYKType O6LLEN OHKOIOrMYECKOMN 3a60/1eBAEMOCTU 1 CMEPTHOCTU Y MY>KUUH
Kak B Poccuu, Tak 1 B 3apy6exHbix cTpaHax. bonblwMHCTBO HOBbIX cnyyaeB PJ1 guarHocTupyeTcs y nauMeHToB cTapLie
65 neT, n B nocnefHue roabl HabnogaeTcs TEHAEHUMA K YBEIMYEHUIO JaHHOro nokasaTens. PJ1 npeacraBnsieT cobom re-
TEPOreHHYLo rpynny 3/10Ka4eCTBEHHbIX ONYXONel C Pa3fNYHbIMU reHEeTUYECKUMM U BUONOrNYECKUMU XapaKTepucTukamu.
HecMoTps Ha To, YTO KypeHMe CYMTaeTCcsl OCHOBHOM NPUYMHON HEMEeTIKOKIETOYHOro paka nerkoro (HMPJ1), reHeTuyeckas
npeApacronoXXeHHOCTb U BO3JeiCTBME OKpYXKatoLLen ABNATCA NpuinHoi passutna 10-15 % cnyyaes 3a6oneBaHus.
TakTuka neyeHunsn nauneHToB ¢ ofHUM HMPJ1 naBHO oTpa6oTaHa u, Kak NpaBuiio, He Bbi3blBAeT HUKAKUX TPyAHOCTeR. Xu-
pypruyeckoe BMeLIaTeNbCTBO ABASETCA OCHOBHbIM METOAOM NeyeHus paHHux ctagui HMPJ1. OgHako, no mepe nporpec-
cMpoBaHus 3aboneBaHNsA BO3pacTaeT pUCK METacTa3npoBaHus, 1 B 3TOM crydae 3 HeKTUBHOCTb XMPYPruiyeckoro Metoaa
JleYeHns pesKo CHukaeTcs. PaspaboTka HOBbIX CXEM NIeKapCTBEHHON Tepanuu, UCMoJIb30BaHMe TapreTHbIX NpenapaToB
YNyuLwmMIa BbXKMBAEMOCTb 60/1bHbIX € PJ1, HecyLLMU OHKOreHHbIe ApaiBepHble MyTaLuu. MNepcoHndUUMpPOBaHHOE fleYeHne
CTaHOBUTCS BCe 60s1ee JOCTYNHbIM MO Mepe Pa3BUTUSA TEXHONOMMN CEKBEHMPOBAHUS. TapreTHas Tepanus HECOMHEHHO
ynyJwaeT ucxoabl 60nbHbIX HMPJT, onyxonm KoTopbix HECYT OHKOreHHble ApaiBepHble MyTauun EGFR, cnuaxune ALK u pe-
apaHXupoBku ROS1. OaHaKo, TOMUMO OCHOBHbIX MOJIEKYISPHbIX MULLEHEW, BbISiBIEHbI U U3Y4aroTCA ApYyrue reHeTuyeckune
anbTepauum, Takue Kak: BUpycHbiii oHkoreH Kirsten RAS (KPAS), MET, RET, HER2 1 NRG. HekoTopble U3 Takux MyTauui
(BRAF 1 NTRK) y>e AOCTynHbI ANs TapreTHoi Tepanuu. NepeyeHb reHeTUYECKMX anbTepalmii pacTeT U pacLUMpseTcs Mosie-
KynsipHoe npodunmposaHue 605bHbix HMPJ], 4To MMeeT BecbMa Ba)KHOe 3Ha4Y€HWE NPpU NPOrpeccMpoBaHnm 3a6oneBaHus.
MonekynapHo-reHeTU4ecknin oT60p NAEHTUOULNPYET KOHKPETHbIE rPYNMbl MaLMEHTOB, KOTOPbIE MOYYaloT Nob3y OT
TapreTHON Tepanun n faeT NpefcTaB/ieHne O MOTEHLMalbHbIX MEXaHU3MaXx Pe3UCTEHTHOCTU. HecMOTps Ha AOCTUTHYTbI
nporpecc, Heo6XxoANMbI AanbHelLLne uccnefoBaHns As BbIICHEHUA B3aUMOAENCTBUI C UMMYHHbBIMMW KNETKaM1 B MUKPO-
OKPY>XEeHUM 0MyX0onu Kak haKTopoB, BAMSIOLLMX Ha BbDKMBAeMOCTb. KpoMe Toro, CTaHOBUTCA BCe 60nee BaXXHbIM U3yyeHne
TapreTHon Tepanun B KOHTEKCTe MyNbTUMOAAIbHOMO fleveHunsi. HacToswmin 0630p NOCBSALLLEH MOHUMAHUIO FrEHETUYECKMX
VN3MEHEHUI, MOUCKY HOBbIX FEHETUYECKUX MULLIEHEN, Npo6ieMaM M GyAyLUMM HanpaBeHUsM pa3BUTUS TapreTHON Tepanum
B JI@YEHUN NaLMEHTOB C OMNYXOJIAMU JIETKUX.

KntoueBble cnosa:
reHeTuyeckue anbtepaunn, KRAS, BRAF, HER2, NTRK, RET, MET, TapreTHas Tepanus

[lna KoppecnoHAeHLuu:

Mup3osH Annaga ApmeHoBHa — acnupaHT ®I'BY «HMUL| oHkonorum» Munaapasa Poccuu, r. Poctos-Ha-[loHy, Poccuitickas Gepepauus.
Appec: 344037, Poccuitickas ®epepauus, r. PoctoB-Ha-[JoHy, yn. 14-9 nuHus, a. 63

E-mail: ellada.mirzoyan@yandex.ru

ORCID: https://orcid.org/0000-0002-0328-9714

SPIN: 2506-8605, AuthorID: 1002948

ResearcherID: AAZ-2780-2021

Scopus Author ID: 57221118516

®uHaHcupoBaHue: pMHaHCUPOBaHME faHHOI PaGoTbl He NPOBOAMOCh.
KOHGAVKT MHTEpecoB: aBTOPbI 3asiBASAT 06 OTCYTCTBUN KOH(DIMKTA UHTEPECOB.

[na untuposaHus:

Xapareso [I. A., NasyTux 10. H., Mup3osiH 3. A., Munakun A. I, CtatewHblii O. H., Jleiiman U. A., Yy6apsH A. B., Mosedu K. [l. MonekynsipHble
MULLIEHWN HEMENKOK/IETOYHOTO paKa JIerKoro BHe «FMaBHOM TPOiiKu». I0xHo-Poccuiickuii oHKonorudeckuit xxypHan. 2021; 2(4): 38-47.
https://doi.org/10.37748/2686-9039-2021-2-4-5.

CraTbs noctynuna B peaakumio 28.07.2021; ogobpeHa nocne peuenauposanus 10.10.2021; npuHsTa k ny6namkaummn 09.12.2021.



South Russian journal of cancer 2020, Vol. 2, No. 4, P. 38-47

Kharagezov D. A., Lazutin Yu. N., Mirzoyan E. A.%, Milakin A. G., Stateshny 0. N., Leiman I. A., Chubaryan A. V., lozefi K. D. / Molecular targets of

non-small cell lung cancer outside the "top three"

INTRODUCTION

Lung cancer is a heterogeneous genomic dis-
ease [1]. Despite the fact that smoking is considered
the main cause of non-small-cell lung cancer (NS-
CLC), genetic predisposition and environmental expo-
sure are responsible for the development of 10-15 %
of cases of the disease. Targeted therapy improved
the survival of patients with tumors carrying oncogen-
ic driver mutations [2]. There is an obvious need to
deepen knowledge about genetic changes in NSCLC
in order to create new targeted drugs. This review
examines molecular genetic targets that are outside
of the epidermal growth factor receptor (UPAC) gene
mutation, ADC fusion and ROS1 rearrangement, new
drugs, problems and future directions of targeted
therapy development.

Viral oncogene KRAS

The viral oncogene Kirsten RAS (KRAS) is the
most frequently mutating isoform of the RAS family
and is found in 22 % of solid tumors, being one of
the most common oncogenic driver mutations in
cancer [3]. KRAS mutations are present in approxi-
mately 20—30 % of NSCLC patients. Despite the early
discovery of the mutation, KRAS-mutant NSCLC is
very heterogeneous, and therapy aimed at the KRAS
mutation is just beginning to develop [4]. Most KRAS
mutations were found in exons 12 and 13: 012C -
39 %, G12V -18-21 % and G12D - 17-18 % [5]. The
presence of the KRAS mutation in the tumor is asso-
ciated with a worse prognosis of NSCLC [6].

KRAS is one of the 4 proteins encoded by the RAS
gene, guanosine triphosphate binds to KRAS in the
active state, and guanosine diphosphate binds to
KRAS in the inactive state. Activating point KRAS
mutations initiate oncogenesis by losing the activ-
ity of GTPases (GTPase — guanosine triphosphate
hydrolase enzymes), which leads to an active state
and constantly activates the downstream signaling
pathways of PI3K and MARK, causing resistance of
NSCLC to existing drug therapy methods [7].

Early attempts to use the KRAS mutation as a tar-
get for targeted therapy failed due to the lack of
known allosteric binding sites, alternative pathways,
and the high affinity of the protein to the active gua-
nosine triphosphate-bound state [8]. Combination
therapy with (MEK1/MEK2) MARK kinase inhibi-
tors formed the basis of a phase 2 clinical trial in
patients with advanced KRAS-mutant NSCLC. The
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combination of selumetinib with docetaxel resulted
in an increase in the overall response to treatment
(ORR- Overall Tumor Responses Rate) to 37 % and
the duration of median survival to progression (RFS)
by 3.2 months. compared to patients who received
only docetaxel. In the combination therapy group,
there was an increase in the number of adverse tox-
ic events of the 3rd degree by 15 %, among which
neutropenia, febrile neutropenia and asthenia pre-
vailed [9]. As a result, the study demonstrated suffi-
cient effectiveness, but at the expense of increased
toxicity. Another phase 1 study showed that in pa-
tients with KRAS-mutant NSCLC treated with tra-
metinib with docetaxel, ORR reached 24 %, while in
patients treated with trametinib with pemetrexed,
this indicator was 17 % [10].

The first phase 1 clinical trial of the small molecule
AMG 510, which specifically and irreversibly inhibits
the KRAS G12C mutation by blocking it in the bound
state, presented immediate results of treatment of 22
patients with progressive solid tumors carrying the
KRAS G12C mutation. Of the 6 patients with NSCLC,
2 had a partial response after 6 weeks of treatment
and 2 more had stabilization of the disease. The av-
erage duration of therapy, which was well tolerated,
was 9.7 weeks [11]. Adverse toxic phenomena of the
1st degree were noted in 68 % of observations; two
toxic reactions of the 3rd degree, namely anemia and
diarrhea, have been reported.

A study examining KRAS co-mutations found
lower response rates of KRAS-mutant lung adeno-
carcinomas with inactivation of KEAR1 (Kelch-like
ECH-associated protein 1) [12]. A subset of tumors
resistant to anti-PD1 antibodies was characterized
by low expression of PD-L1 and inactivation of
the tumor suppressor gene STK11/LKB1 (Serine -
Threonine Kinase 11/Liver kinase B1), which led to
the accumulation of tumor-associated neutrophils
with a suppressive effect on T cells [13]. Somatic
mutations of LCV1 are noted in about 30 % of lung
adenocarcinomas. Preliminary studies have shown
that NSCLC with KRAS/LKB1 co-mutations clearly
responds to targeted therapy. A study on mice with
KRAS/LKB1 or KRAS/p53 mutations revealed a se-
lective apoptotic response of KRAS/LKB1 — mutant
NSCLC to the metabolic drug phenformin, an analog
of metfurmin. Apoptosis is observed in NSCLC cell
lines with the LKB1 mutation, but not with wild-type
KRAS [14]. Thus, KRAS — mutant NSCLC is once again
becoming a rapidly developing area of research for
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the development of new treatment options for pa-
tients with unrealized liver needs.

BRAF proto-oncogene

The BRAF proto-oncogene encodes serine/thre-
onine kinase, which is located below RAS and leads
to the transmission of signals via RAS-RAF (rapidly
accelerated fibrosrcoma) - MARK (mitogen-activated
protein kinase) - MARK/ERK (extracellular-signal-
regulated kinase) MARK/ERK signaling pathway,
which is a key molecular cascade regulating cell
growth [15]. After the discovery of BRAF mutations
in melanoma, mutant BRAF was found to mediate
lung adenocarcinoma carcinogenesis. BRAF muta-
tions are detected in 2—-3 % of lung adenocarcinomas
and in 50-75 % are represented by the BRAF V600E
mutation, more often observed in smokers or quit
smoking patients [16; 17].

Vemurafenib has demonstrated its effectiveness
in patients with generalized NSCLC carrying the BRAF
V600E mutation [18; 19]. Dabrafenib was studied in
a phase 2 clinical trial in patients with BRAF V600E
mutant metastatic NSCLC [20]. ORR reached 33 %,
and the median overall survival(s) was 12.7 months.
The combination of dabrafenib and trametinib was
studied in another phase 2 study in patients with
BRAF V600E mutant NSCLC. Combination therapy
led to an increase in ORR to 63.2 % and was approved
by the European Medicines Agency and the US FDA
(Food and Drug Administration) for the treatment of
patients with stage IV BRAF V600E mutant NSCLC [7].

Neurotrophin tyrosine kinase receptor

The tropomyosin receptor kinase (TRK) gene en-
codes tyrosine kinase receptors for neurotrophins
found in many tissues and associated with the nerve
growth factor family. Three members of the family
are proto-oncogenes encoded by NTRK1, NTRK2 and
NTAK3, which respectively produce TrkA, TrkB and
THC proteins, activation of which leads to the trans-
mission of signals along the signaling pathways of
MARK and ACT, leading to cell proliferation, differ-
entiation and survival [21]. NTRK rearrangements
occurring in all 3 genes have been identified in var-
ious malignancies, including lung cancer [22]. Less
than 1 % of cases of NSCLC carry NTRK mergers
and occur in men and women of different ages with
different smoking history [23].

Numerous tyrosine kinase inhibitors (TRK) are
being investigated in the treatment of malignant tu-
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mors with altered NTRK. The US FDA approved the
appointment of larotrectinib and entrectinib for the
treatment of solid tumors with NTRK mutations in
adults and children [21]. The first report of a patient
with a regression of the tumor carrier NTRK fusion,
achieved as a result of the appointment of a selec-
tive tyrosine kinase inhibitor larotrectinib, dates back
to 2015 [24]. Subsequently, the inhibition of tumor
growth was confirmed experimentally. In a phase 1
clinical trial, larotrectinib was studied in adults and
children with different tumors carrying NTRK merg-
ers. In 55 patients with 13 types of tumors included
in the study, the most common were NTRK3 mergers
(n = 29), followed by NTRK1 (n = 25) and NTRK2
(n=1). As aresult, the study demonstrated an overall
response rate of 75 % to therapy [25].

The results of the phase 1 study of entrectinib in-
dicated the antitumor activity of the drug in a patient
with NTRK 1 positive NSCLC [26].

Analysis of the results of 3 studies of entrectinib,
which included 54 patients with NTRK or ROS1 posi-
tive tumors, demonstrated an ORR equal to 57 % with
a median progression-free survival of 11.2 months
and a median of 20.9 months [27]. Additional clinical
trials of TRK inhibitors are currently underway.

Epidermal growth factor receptor 2

The human epidermal growth factor receptor 2
(NR2), a member of the ErbB receptor tyrosine ki-
nase family, activates signaling via the RISC-ACT
and MEK-EAK signaling pathways. NONR2 is acti-
vated by homo- and heterodimerization with other
members of the ErbB family, but has no established
ligand [28]. Overexpression of NR2 is observed in
13-20 % of cases of NSCLC and is more common in
women who have never smoked with adenocarcino-
ma [29]. HER2 mutations are oncogenic and lead to
constitutive HER2 phosphorylation and activation of
EGFR stimulating signaling pathways. Amplification
and mutations of NONR2 are rare, accounting for 9 %
and 3 % of cases of NSCLC, respectively [30]. NONR2
mutations usually occur in exons 18-21, usually in
exon 20 in codon 776 with a 12-pair duplication/in-
sertion of the YYMA amino acid sequence. It remains
unclear whether patients with NONR2 mutant NSCLC
have a worse outcome compared to other patients.

A prospective study of the pan-HER tyrosine kinase
inhibitor dacomitinib, irreversibly binding NONR2,
NONR1(EGFR) and HER4, included 26 patients with
NONR2-mutated and 4 with NONR2-amplified NS-
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CLC [31]. The overall response rate to therapy was
12 % in patients with NONR2 — mutant NSCLC; in
patients with NONR2-amplified NSCLC, no tumor re-
sponse was registered in any observation. Median
RES was 3 months for all patients. In the group of
NONR2 mutant tumors, the median progression-free
survival was also 3 months. with a one-year OV equal
to 44 %. Pan-HER tyrosine kinase inhibitor afatinib,
has shown limited action in NONR2-mutant NSCLC.
The study of afatinib activity showed a median pro-
gression-free survival of 15.9 weeks, and a median
of 56 weeks [32].

Other low-molecular-weight TCS are also being
tested. Thus, with monotherapy with the irreversible
pan-HER inhibitor neratinib, the median PFS was 2.9
months. Median PFS increased to 4 months. with
the combined appointment of neratinirb and temsi-
rolimus [33].

It was found that the response to neratinib varied
depending on co-mutations and parallel activation
of signaling pathways. Patients with NONR2-mutant
NSCLC were characterized by a very low response
rate and often had co-mutations in TP53 and NONRS3.
Activation of the RAS/RAF signaling pathway coin-
ciding with aberrations of cell cycle control points
was associated with worse results and generally with
a lack of clinical efficacy [34].

Antibody-based drugs have shown efficacy against
NONR2-mutant NSCLC. In a phase 2 study, 18 pa-
tients with NONR2 mutant lung adenocarcinomas
were treated with T-DM1 with a 44 % partial response
rate and a median PFS of 5 months [35].

A European retrospective study analyzed data
from 101 patients with NONR2-mutant NSCLC who
received chemotherapy and/or NONR2-targeted
therapy. The median OV was 24 months for all pa-
tients, despite whether or not targeted therapy was
performed. The overall response to treatment was
highest in patients who received trastuzumab with
or without chemotherapy, or in those who received
T-DM1 with a median PFS of 4.8 months [36].

Mesenchymal-epithelial junction (MET) is a proto-
oncogene encoding transmembrane METH. Binding
of the hepatocyte growth factor ligand by it activates
the signaling pathways PI3K/ACT, MARK, NF-KB, as
well as a signal transductor and activator of transcrip-
tion proteins that promote proliferation, increase cell
mobility and invasion, block apoptosis. METH alter-
ations are found in many cancers, including NSCLC.
They induce tumor progression through gene ampli-
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fication, mutations, rearrangements, overexpression
and phosphorylation of proteins [37].

MET-positive NSCLC is most often manifested by
overexpression of proteins, while MET amplification
is relatively rare and is observed in about 2.2 % of
newly diagnosed cases of adenocarcinoma and up
to 7 % of cases of all NSCLC. The amplification of
the MET gene is a negative prognostic factor in the
surgical treatment of NSCLC with an OV equal to
25.5 months in patients with 5 or more copies per
cell versus 47.5 months for patients with less than
5 copies per cell, respectively. KIF5B MergerMETH
was registered in lung adenocarcinoma, other METH
rearrangements are rare [38].

Alterations of the MET gene in exon 14, observed in
4 % of lung adenocarcinomas, are diverse and lead to
carcinogenesis; changes are associated with age and
a long history of smoking [39]. Substitutions of bases
or deletions in MET that violate the 3' or 5' sites of
the intron 14 junction lead to the omission of the 14
exon of MET. The omission of exon 14 causes a de-
crease in ubiquitination and degradation of METH,
which leads to an increase in the level of METH and
the downward transmission of a signal stimulating
carcinogenesis. Alterations of the 14 exon of MET
vary widely. 126 different variants were identified in
223 different aberrations of 14 exons [40].

Multi-purpose TKI and TKI with increased sensi-
tivity to METH are used against METH alterations.
In addition, monoclonal antibodies are being stud-
ied in patients with METH-driver tumors. The dual
MET/ALK inhibitor crizotinib demonstrated objective
responses of MET-amplified and MET-mutant NS-
CLC [40]. Additionally, the combination of crizotinib
with cabozantinib causes an antitumor response in
patients with lung adenocarcinoma carrying a MET
mutation in exon 14. A phase 1 clinical study showed
that in patients with NSCLC with a high level of METH
amplification, crizotinib has antitumor activity with
a median PFS of 6.7 months [41].

A phase 2 study considered a specific MET inhib-
itor for the MET mutant in exon 14 of NSCLC-tepo-
tinib. In patients with MET mutation identification
by liquid biopsy, preliminary results showed a 50 %
level of objective response with a median PSF of 9.5
months; in patients with mutation detection in tumor
tissue during biopsy, the level of objective response
was 45.1 % with a median PSF of 10.8 months [42].

In another phase 2 study, a specific MET inhibi-
tor capmatinib was studied in progressive NSCLC
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carrying a MET mutation in exon 14. According to
preliminary data, the level of objective response was
40.6 %, and the median PFS was 5.42 months. Previ-
ously untreated patients had an objective response
rate of 67.9 % and a median PFS of 9.69 months [43].
Kapmatinib has demonstrated action against brain
metastases and good tolerability.

A specific biomarker for the selection of patients
remains unidentified, therefore, at present, the de-
tection of mutation is a predictor of an effective
response to NONR2-targeted therapy. Molecular
aberrations in NONR2 mutant NSCLC are heteroge-
neous, which determines the different effectiveness
of NONR2 kinase inhibitors. It is necessary to take
into account important characteristics such as the
type of mutation, the presence of NONR2 amplifica-
tion, expression and parallel activation of signaling
pathways.

Proto-oncogene (RET)

RET - receptor tyrosine kinase mediating the de-
velopment of the neural crest, the activation of which
causes cell proliferation, migration and differentiation
of cells [44]. Alterations of RET genes are most com-
mon in thyroid and lung cancers [45]. With NSCLC,
fusion with KIF5B is most common. RET mergers lead
to ligand-independent dimerization and activation of
the downstream signaling pathway.

RET mergers occur in approximately 1.4 % of cas-
es of NSCLC and in 1.7 % of lung adenocarcinomas
and are found mainly in non-smoking patients older
than 60 years. An NGS study of more than 4,800 pa-
tients with various malignancies showed that the al-
tered status of the RET gene occurs in 1.8 % of cases,
most of which had concomitant genomic changes,
suggesting that successful treatment should include
individual combined approaches [46].

Various multikinase TKls have been studied with
NSCLC carrying RET rearrangements. A prospective
phase Il study to evaluate the efficacy of cabozantinib
in 25 patients with RET-positive lung adenocarcinoma
revealed a 28 % response rate to therapy with a medi-
an PFS of 5.5 months and median S = 9.9 months [47].
A similar clinical study of vandetanib in 19 patients
with PFS-positive NSCLC showed a 53 % overall re-
sponse rate with a median RET of 4.7 months [48].
The global multicenter registry contains data on the
results of treatment of 165 patients with RET-positive
NSCLC, of which 53 were prescribed at least one RET
inhibitor therapy [49]. The use of cabozantinib, suni-
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tinib and vandetanib gave an overall response rate of
37 %, 22 % and 18 %, respectively, in addition, lenva-
tinib and nantedanib also caused a tumor response.
In all patients, the median PFS was 2.3 months, and
the median S reached 6.8 months. Despite the fact
that studies have confirmed the inhibitory activity of
multikinase TKI in RET-positive NSCLC, the reaction
to them was modest and short-lived.

RET-specific inhibitors are being developed in the
hope of overcoming the limitations inherent in multiki-
nase inhibitors. A report on patients with RET-positive
malignancies showed that the powerful KW inhibitor
LOX0-292 caused a general response to treatment
in 65 % of 26 patients with NSCLC. BLU-667, another
selective RET inhibitor, has demonstrated activity in
preclinical studies and objective tumor responses in
patients with RET-positive NSCLC [50]. A study of 48
patients showed a 58 % overall response rate for the
entire group, in addition, BLU-667 is effective in patients
with various KW mergers and metastases [51; 52].

Neuroregulin 1

The neuregulin 1 gene (NRG1) encodes the neu-
regulin protein. Unlike other mergers in NSCLC, NRG1
encodes the tyrosine kinase receptor ligand HERZ
and HER4. In these mergers, NRG1 is a 3' partner,
other genes such as CD74, RBPMS, WRN and SDC4
are 5' partners. The EGF domain NRG1, located in the
carboxy-terminal region, is necessary for the interac-
tion of receptors. NRG1 mergers in NSCLC samples
are detected in isolation from other known driver
mutations [53; 54]. CD74-NRG1 mergers account
for 1.7 % of lung adenocarcinomas and are most
often found in invasive mucinous adenocarcinoma
subtype of NSCLC, which accounts for 2 % to 10 % of
all cases of lung adenocarcinoma [55]. CD74-NRG1
fusion causes activation of the PI3K ACT signaling
pathway, which induces carcinogenesis.

Despite the small amount of data available, an
in vitro study showed that lapatinib and afatinib in-
hibit the phosphorylation of HER2, HER3 and ERK
produced by CD74-NERG1 fusion. In two cases of
NSCLC carrying NRG1 fusion, a response to therapy
with afatinib, an inhibitor of HER2, was noted. Median
PFS with NSCLC carrying the fusion of SLC3A2-NRG1
and CD74-NRG1 was 12 months and 10 months, re-
spectively. Recently, it was reported that a patient
with CD74-NRG1-positive NSCLC reacted to the in-
troduction of a monoclonal antibody against HER3
for 19 months [56].
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CONCLUSION

Lung cancer is a heterogeneous group of malig-
nant tumors with different genetic and biological
characteristics. Molecular genetic studies determine
the appropriate therapy for many patients with NSCLC
by precision drug exposure to specific alterations.
The list of genetic alterations is growing and ex-

is very important in the progression of the disease.
Molecular genetic selection identifies specific groups
of patients who benefit from targeted therapy and
provides insight into the potential mechanisms of re-
sistance. Despite the progress made, further studies
are needed to clarify interactions with immune cells
in the tumor microenvironment as factors affecting
survival. In addition, it is becoming increasingly im-
portant to study targeted therapy in the context of

panding molecular profiling of patients with NSCLC ~ multimodal treatment.
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