Preview

Южно-Российский онкологический журнал/ South Russian Journal of Cancer

Расширенный поиск

Первичные культуры: современные методы получения и поддержания in vitro

Аннотация

В течение последних десятилетий перевиваемые клеточные линии являлись доступной моделью для изучения биологии и влияния химиотерапевтических препаратов на опухоли. Однако, многочисленные исследования показали, что данные клеточные линии недостаточно гетерогенны и не могут отражать лекарственную резистентность опухолей, возникающую у некоторых пациентов. Культуры первичных клеточных линий, выделенные из солидных опухолей, получили значительное распространение для определения химиочувствительности опухолей к препаратам, применяемым в химиотерапии. В данном обзоре рассматриваются основные методы получения и культивирования первичных клеточных линий. Дается краткая характеристика методикам дезагрегации опухолевого материала при помощи ферментативной, химической и механической диссоциации. Рассмотрены системы культивирования первичных клеточных культур: 2-D культивирование, 3-D культивирование, эксплантация опухолевых фрагментов. Выбор подходящего метода диссоциации и культивирования имеет важное значение для сохранения преимуществ первичной культуры в доклинических исследованиях.

Об авторе

Ирина Валентиновна Межевова
ФГБУ "НМИЦ онкологии" МЗ РФ
Россия
Младший научный сотрудник Лаборатории клеточных технологий


Список литературы

1. Freshney J. Культура животных клеток. Практическое руководство. Перевод с 5-го английского издания. Москва: Бином.Лаборатория знаний; 2011.

2. Leithner K, Wohlkoenig C, Stacher E, Lindenmann J, Hofmann NA, Gallé B, et al. Hypoxia increases membrane metallo-endopeptidase expression in a novel lung cancer ex vivo model—role of tumor stroma cells. BMC Cancer. 2014;25(14):40.

3. Hanahan D, Coussens LM. Accessories to the crime: Functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012; 21:309–322.

4. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14(10):611–29.

5. Hirata, E., & Sahai, E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harbor Perspectives in Medicine. 2017; 7(7).

6. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends in Biotechnology. 2013; 31(6).

7. Li WC. et al. Isolation and culture of adult mouse hepatocytes. Methods Mol. Biol. 2010; 633: 185–196.

8. Janik M. Popeda J. Peciaк, K. Rosiaк M. Smolarz C. T. P. Rieske E. Stoczynska-Fidelus M. Ksiazkiewicz. Efficient and simple approach to in vitro culture of primary epithelial cancer cells. K. Biosci. Rep. 2016; 36. doi 10.1042/BSR20160208.

9. Volovitz et al. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single-cells. BMC Neurosci. 2016; 17(30). doi 10.1186/s12868-016-0262-y

10. Skog M, Sivle´r P, Steinvall I, Aili D, Sjoberg F, Elmasry M. The Effect of Enzymatic Digestion on Cultured Epithelial Autografts. Cell Transplantation. 2019; 28(5) 638–644. doi: 10.1177/0963689719833305

11. Nishikata T, Ishikawa M, Matsuyama T, Takamatsu K, Fukuhara T, Konishi Y,

12. Maselli V, Xu F, Syed NI, Polese G, Cosmo D. Primary Culture of Breast Cancer: A Model System for Epithelial-Mesenchymal Transition and Cancer Stem Cells. Anticancer research. 2013; 33: 2867-2874.

13. Spaethling JM, Na YJ, Lee J, Ulyanova AV, Baltuch GH, Bell TJ, Eberwine JH. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Reports. 2017;18(3):791–803. doi:10.1016/j.celrep.2016.12.066

14. Mederacke I, Dapito DH, Affò S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nature Protocols. 2015;10(2):305–315. doi:10.1038/nprot.2015.017

15. Li WC. et al. Isolation and culture of adult mouse hepatocytes. Methods Mol. Biol. 2010; 633:185–196.

16. Castell JV, Gomez-Lechon MJ. Liver cell culture techniques. Methods Mol. Biol. 2009; 481:35–46.

17. Vessels D, Ribatti. A milestone in the study of the vascular system: wilhelm roux's doctoral thesis on the bifurcation of blood. Haematologica. 2002; 87:677-678.

18. Damm G, Schicht G, Zimmermann A, Rennert C, Fischer N, Kießig M, Wagner T, Kegel V, Seehofer D. Effect of glucose and insulin supplementation on the isolation of primary human hepatocytes. EXCLI J. 2019;18(18):1071-1091. doi: 10.17179/excli2019-1782.

19. Trojaneck B, Niemitz S, Micka B, Lefterova P, Blasczyk R, Scheffold C, Schmidt-Wolf IG. Establishment and Characterization of Colon Carcinoma and Renal Cell Carcinoma Primary Cultures. Cancer Biotherapy and Radiopharmaceuticals. 2000; 15(2):169–174. doi:10.1089/cbr.2000.15.169

20. Krbala L, Soukupa J, Johnb S, Hanusovab V. Derivation and basic characterization of colorectal carcinoma primary cell lines. Biomed Pap. 2017; 161(4):360-368.

21. Cunningham RE. Tissue disaggregation. Methods Mol. Biol. 2010; 588:327–330.

22. Skarkova M, Krupova B, Vitovcova А, Skarka P, Kasparova, Krupa P, Kralova V, Rudolf V. The evaluation of glioblastoma cell dissociation and its influence on its behavior. Int. J. Mol. Sci. 2019; 20(4630). doi:10.3390/ijms20184630

23. Qiu X, De Jesus, Pennell J, Troiani M, Haun JB. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab on a Chip. 2015; 15(1): 339–350. doi:10.1039/c4lc01126k

24. Kar R, Chawla D, Gupta B, Mehndiratta M, Wadhwa N, Agarwal R. Еstablishment of primary cell culture from ascitic fluid and solid tumor obtained from epithelial ovarian carcinoma patients. International Journal of Gynecological Cancer. 2017; 27(9):2000–2005. doi:10.1097/igc.0000000000001087

25. Филиппова СЮ, Ситковская АО., Сагакянц АБ, Бондаренко ЕС, Ващенко ЛН, Кечеджиева ЭЭ, Дашкова ИР. Выделение опухолевых стволовых клеток рака молочной железы с применением коллагеназы. Современные проблемы науки и образования. 2019;6:147.

26. Межевова ИВ, Ситковская АО, Росторгуев ЭЕ, Филиппова СЮ, Нистратова ОВ, Кузнецова НС, Карнаухов НС. Нейрохирургический подход для получения первичных клеточных линий глиальных опухолей. Исследования и практика в медицине. 2019; 6(S)191.

27. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends in Biotechnology. 2013; 31(6).

28. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, Lamperska K. 2D and 3D cell cultures – a comparison of different types of cancer cell cultures. Archives of Medical Science. 2016. doi:10.5114/aoms.2016.63743

29. Burdett E, Kasper FK, Mikos AG, Ludwig JA. Еngineering tumors: a tissue engineering perspective in cancer biology. Тissue engineering part B: Reviews. 2010; 16(3):351–359. doi:10.1089/ten.teb.2009.0676

30. Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017; 23:27-36. doi: 10.1016/j.ddtec.2017.03.002

31. Jeppesen M, Hagel G, Glenthoj A, Vainer B, Ibsen P, Harling H, et al. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS ONE. 2017:12(9). Doi: org/10.1371/journal.pone.0183074

32. Ahmad A. Breast Cancer Metastasis and Drug Resistance. Advances in Experimental Medicine and Biology. 2019 doi:10.1007/978-3-030-20301-6

33. Halfter K, Hoffmann O, Ditsch N, Ahne M, Arnold F, Paepke S, et al. Testing chemotherapy efficacy in HER2 negative breast cancer using patient-derived spheroids. J Transl Med. 2016;14(1):112.

34. Qureshi-Baig K, Ullmann P, Rodriguez F, Frasquilho S, Nazarov PV, Haan S, et al. What do we learn from spheroid culture systems? Insights from tumorspheres derived from primary colon cancer tissue. PLoS ONE. 2016;11(1): e0146052.

35. Weiswald LB, Bellet D, Dangles-Marie V. Spherical Cancer Models in Tumor Biology. Neoplasia. 2015:17(1):1–15. doi:10.1016/j.neo.2014.12.004

36. Jaganathan H, Gage J, Leonard F et al Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014; 4:6468.

37. Booth ME, Nash CE, Roberts NP et al. 3-D tissue modelling and virtual pathology as new approaches to study ductal carcinoma in situ. Altern Lab Anim. 2015;43: 377–383.

38. Sokol ES, Miller DH, Breggia A et. al. Growth of human breast tissues from patient cells in 3D hydrogel scaffolds. Breast Cancer Res. 2016;18:19.

39. Alcoser TA, Bordeleau F, Carey SP, Lampi MC, Kowal DR, Somasegar S, Reinhart-King CA. Probing the Biophysical Properties of Primary Breast Tumor-Derived Fibroblasts. Cellular and Molecular Bioengineering. 2014; 8(1):76–85. doi:10.1007/s12195-014-0360-9

40. De T, Goyal S, Balachander G, Chatterjee K, Kumar P, Babu KG, Rangarajan A. A novel ex vivo system using 3d polymer scaffold to culture circulating tumor cells from breast cancer patients exhibits dynamic e-m phenotypes. Journal of Clinical Medicine. 2019; 8(9):1473. doi:10.3390/jcm8091473

41. Nayak B, Balachander GM, Manjunath S, Rangarajan A, Chatterjee K. Tissue mimetic 3d scaffold for breast tumor-derived organoid culture toward personalized chemotherapy. Colloids and Surfaces B: Biointerfaces. 2019. 180:334-343. doi:10.1016/j.colsurfb.2019.04.056

42. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends in Biotechnology. 2013; 31(6): 347–354. doi:10.1016/j.tibtech.2013.03.006

43. Shwetha HR, Kotrashetti VS, Babu NC, Kumbar V, Bhat K, Reddy R. Ex vivo culture of oral keratinocytes using direct explant cell culture technique. J Oral Maxillofac Pathol. 2019;23(2):243-247. doi: 10.4103/jomfp.JOMFP_105_19.

44. Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, Sengupta S. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Science Signaling. 2019;12(595). doi:10.1126/scisignal.aas8779

45. Baird JR, Bell RB, Troesch V, Friedman DJ, Bambina S, Kramer G, Gough MJ. Evaluation of explant responses to STING ligands: personalized immunosurgical therapy for head and neck squamous cell carcinoma. Cancer Research, canres. 2018;78(21):6308-6319. 1652.2018. doi:10.1158/0008-5472.can-18-1652

46. Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, Seeli-Maduz F, Fuchs B. Explant culture of sarcoma patients’ tissue. Laboratory Investigation. 2016; 96(7):752–762. doi:10.1038/labinvest.2016.49

47. Mutuku SM, Trim PJ, Prabhala BK, Irani S, Bremert KL, Logan JM, Brooks DA, Stahl J, Centenera MM, Snel MF, Butler LM. Evaluation of small molecule drug uptake in patient-derived prostate cancer explants by mass spectrometry. Sci Rep. 2019;18;9(1):15008. doi: 10.1038/s41598-019-51549-3

48. Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H, Tilley WD. A patient-derived explant (PDE) model of hormone-dependent cancer. Molecular Oncology. 2018; 12(9):1608-1622. doi:10.1002/1878-0261.12354

49. Ricciardelli C, Lokman NA, Sabit I, Gunasegaran K, Bonner WM, Pyragius CE, Oehler MK. Novel ex vivo ovarian cancer tissue explant assay for prediction of chemosensitivity and response to novel therapeutics. Cancer Letters. 2018; 421:51–58. doi:10.1016/j.canlet.2018.02.006

50. Karekla E, LiaoWJ, Sharp B, Pugh J, Reid H, Quesne JL, Pringle JH. Ex VivoExplant Cultures of Non–Small Cell Lung Carcinoma Enable Evaluation of Primary Tumor Responses to Anticancer Therapy. Cancer Research. 2017;77(8), 2029–2039. doi:10.1158/0008-5472.can-16-1121


Дополнительные файлы

1. сопроводительное письмо и договор на передачу авторских прав
Тема
Тип Прочее
Скачать (4MB)    
Метаданные

Для цитирования:


Межевова И.В. Первичные культуры: современные методы получения и поддержания in vitro. Южно-Российский онкологический журнал/ South Russian Journal of Cancer. 2020;1(3).

Просмотров: 5


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2687-0533 (Print)
ISSN 2686-9039 (Online)