Preview

South Russian Journal of Cancer

Advanced search

Modern approaches to glioblastoma therapy

https://doi.org/10.37748/2686-9039-2023-4-1-6

EDN: IICMMC

Abstract

Glioblastoma (GBM) is the most malignant and the most common primary tumor of the central nervous system. During the last several years GBM has been classified and managed according to the World Health Organization (WHO) criteria which subdivide it into primary and secondary GBM. As it is suggested, GBM originates from glial cells and has a diffuse growth pattern, but its etiology and pathophysiology are poorly investigated up to date. Its rapid progression and anatomical location in the brain often limits the effectiveness of therapeutic interventions. Despite all scientific and technological advances, GBM remains an incurable disease with a median survival of approximately 18 months. Standard treatment options involving maximal safe resection of the tumor followed with radiotherapy and chemotherapy do not provide satisfactory Results.

Better understanding of the molecular pathology of GBM and its associated signaling pathways has opened up possibilities for new treatments for newly diagnosed and relapsing tumors. A multitargeted therapeutic approach using compounds capable of inhibiting more than one specific molecular target is a promising alternative to conventional therapies.

Currently, specialists study such innovative treatment options as small molecule inhibitors aimed at signaling pathway disruptions, immunotherapy, including checkpoint inhibitors, oncolytic vaccines, CAR T-cell therapy, and drug delivery systems. In terms of an innovative approach, the elaboration of targeted drug delivery systems is of particular interest, since this strategy looks the most promising due to its ability to increase the bioavailability and effectiveness of both standard and newly tested agents. This review discusses results of preclinical and clinical studies of innovative therapeutic approaches, their advantages and disadvantages. An interdisciplinary approach is expected to be able to combine the results of cutting-edge research in this area and to provide novel promising therapeutic strategies for patients with GBM.

About the Authors

N. S. Kuznetsova
National Medical Research Centre for Oncology
Russian Federation

 

Natalia S. Kuznetsova – MD, oncologist, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0002-2337-326X, SPIN: 8553-3081, AuthorID: 920734, ResearcherID: AGG-8960-2020


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



S. V. Gurova
National Medical Research Centre for Oncology
Russian Federation

 

Sofya V. Gurova – junior research fellow of the testing laboratory center, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0002-9747-8515, SPIN: 5413-6901, AuthorID: 1147419


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



A. S. Goncharova
National Medical Research Centre for Oncology
Russian Federation

 

Anna S. Goncharova – Cand. Sci. (Biol.), head of the testing laboratory center, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0003-0676-0871, SPIN: 7512-2039, AuthorID: 553424, Scopus Author ID: 57215862139


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



E. V. Zaikina
National Medical Research Centre for Oncology
Russian Federation

 

Ekaterina V. Zaikina – junior research fellow of the testing laboratory center, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0003-0088-2990, SPIN: 4000-4369, AuthorID: 1045258, Scopus Author ID: 57221463270гуса


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



M. A. Gusareva
National Medical Research Centre for Oncology
Russian Federation

 

Marina A. Gusareva – Cand. Sci. (Med.), head of the department of radiotherapy No. 1, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-9426-9662, SPIN: 9040-5476, AuthorID: 705242


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



M. S. Zinkovich
National Medical Research Centre for Oncology
Russian Federation

 

Mikhail S. Zinkovich – Cand. Sci. (Med.), radiotherapist, radiotherapy department No. 1, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation.

ORCID: https://orcid.org/0000-0003-2460-0038, SPIN: 1072-9674, AuthorID: 735168


Competing Interests:

the authors state that there are no conflicts of interest to disclose.



References

1. Goenka A, Tiek D, Song X, Huang T, Hu B, Cheng SY. The Many Facets of Therapy Resistance and Tumor Recurrence in Glio- blastoma. Cells. 2021 Feb 24;10(3):484. https://doi.org/10.3390/cells10030484

2. Davis ME. Glioblastoma: Overview of Disease and Treatment. Clin J Oncol Nurs. 2016 Oct 1;20(5 Suppl):S2–8. https://doi.org/10.1188/16.cjon.s1.2-8

3. Kit OI, Maksimov AYu, Novikova IA, Goncharova AS, Lukbanova EA, Sitkovskaya AO, et al. The use of biocompatible composite scaffolds in oncology. Siberian Journal of Oncology. 2022;21(1):130–136. (In Russ.). https://doi.org/10.21294/1814-4861- 2022-21-1-130-136, EDN: XVDMLL

4. Fernandes GFDS, Fernandes BC, Valente V, Dos Santos JL. Recent advances in the discovery of small molecules targeting glioblastoma. Eur J Med Chem. 2019 Feb 15;164:8–26. https://doi.org/10.1016/j.ejmech.2018.12.033

5. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018 Jul;15(7):422– 442. https://doi.org/10.1038/s41571-018-0003-5

6. Rostorguev EE, Kit OI, Goncharova AS, Nepomnyaschaya EM, Volkova AV, Zaikina EV, et al. Study of antitumor efficacy of bortezomib combined with temozolomide in subcutaneous pdx models of human glioblastoma. Modern Problems of Science and Education. 2020;5:121. (In Russ.). https://doi.org/10.17513/spno.30191, EDN: WXCLJZ

7. Sfifou F, Hakkou EM, Bouaiti EA, Slaoui M, Errihani H, Al Bouzidi A, et al. Correlation of immunohistochemical expression of HIF-1alpha and IDH1 with clinicopathological and therapeutic data of moroccan glioblastoma and survival analysis. Ann Med Surg (Lond). 2021 Aug 17;69:102731. https://doi.org/10.1016/j.amsu.2021.102731

8. Fang Y, Liao G, Yu B. Small-molecule MDM2/X inhibitors and PROTAC degraders for cancer therapy: advances and perspec- tives. Acta Pharm Sin B. 2020 Jul;10(7):1253–1278. https://doi.org/10.1016/j.apsb.2020.01.003

9. Yakovlenko YuG. Glioblastoma: the current state of the problem. Medical Herald of the South of Russia. 2019;10(4):28–35. (In Russ.). https://doi.org/10.21886/2219-8075-2019-10-4-28-35, EDN: TBNEML

10. Daniele S, La Pietra V, Barresi E, Di Maro S, Da Pozzo E, Robello M, et al. Lead Optimization of 2-Phenylindolylglyoxylyldipep- tide Murine Double Minute (MDM)2/Translocator Protein (TSPO) Dual Inhibitors for the Treatment of Gliomas. J Med Chem. 2016 May 26;59(10):4526–4538. https://doi.org/10.1021/acs.jmedchem.5b01767

11. Rew Y, Sun D. Discovery of a small molecule MDM2 inhibitor (AMG 232) for treating cancer. J Med Chem. 2014 Aug 14;57(15):6332–6341. https://doi.org/10.1021/jm500627s

12. Stupp R, Hegi ME, Gorlia T, Erridge SC, Perry J, Hong YK, et al. Cilengitide combined with standard treatment for patients with newly diagnosed glioblastoma with methylated MGMT promoter (CENTRIC EORTC 26071-22072 study): a multicentre, ran- domised, open-label, phase 3 trial. Lancet Oncol. 2014 Sep;15(10):1100–1108. https://doi.org/10.1016/s1470-2045(14)70379-1

13. Khoo KH, Verma CS, Lane DP. Drugging the p53 pathway: understanding the route to clinical efficacy. Nat Rev Drug Discov. 2014 Mar;13(3):217–236. https://doi.org/10.1038/nrd4236

14. Masica DL, Karchin R. Collections of simultaneously altered genes as biomarkers of cancer cell drug response. Cancer Res. 2013 Mar 15;73(6):1699–1708. https://doi.org/10.1158/0008-5472.can-12-3122

15. Ding Q, Zhang Z, Liu JJ, Jiang N, Zhang J, Ross TM, et al. Discovery of RG7388, a potent and selective p53-MDM2 inhibitor in clinical development. J Med Chem. 2013 Jul 25;56(14):5979–5983. https://doi.org/10.1021/jm400487c

16. Adzemovic MV, Zeitelhofer M, Eriksson U, Olsson T, Nilsson I. Imatinib ameliorates neuroinflammation in a rat model of multiple sclerosis by enhancing blood-brain barrier integrity and by modulating the peripheral immune response. PLoS One. 2013;8(2):e56586. doi: https://doi.org/10.1371/journal.pone.0056586

17. Papadopoulos N, Lennartsson J. The PDGF/PDGFR pathway as a drug target. Mol Aspects Med. 2018 Aug;62:75–88. https://doi.org/10.1016/j.mam.2017.11.007

18. Appiah-Kubi K, Wang Y, Qian H, Wu M, Yao X, Wu Y, et al. Platelet-derived growth factor receptor/platelet-derived growth fac- tor (PDGFR/PDGF) system is a prognostic and treatment response biomarker with multifarious therapeutic targets in cancers. Tumour Biol. 2016 Aug;37(8):10053–10066. https://doi.org/10.1007/s13277-016-5069-z

19. Lewandowski SA, Fredriksson L, Lawrence DA, Eriksson U. Pharmacological targeting of the PDGF-CC signaling pathway for blood–brain barrier restoration in neurological disorders. Pharmacology & Therapeutics. 2016;167:108–119. https://doi.org/10.1016/j.pharmthera.2016.07.016

20. Westermark B. Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci. 2014 Nov;119(4):298– 305. https://doi.org/10.3109/03009734.2014.970304

21. Lau D, Magill ST, Aghi MK. Molecularly targeted therapies for recurrent glioblastoma: current and future targets. Neurosurg Focus. 2014 Dec;37(6):E15. https://doi.org/10.3171/2014.9.focus14519

22. Lindberg N, Holland EC. PDGF in gliomas: more than just a growth factor? Ups J Med Sci. 2012 May;117(2):92–98. https://doi.org/10.3109/03009734.2012.654860

23. Nagarajan PP, Tora MS, Neill SG, Federici T, Texakalidis P, Donsante A, et al. Lentiviral-Induced Spinal Cord Gliomas in Rat Model. Int J Mol Sci. 2021 Nov 30;22(23):12943. https://doi.org/10.3390/ijms222312943

24. Le X, Nilsson M, Goldman J, Reck M, Nakagawa K, Kato T, et al. Dual EGFR-VEGF Pathway Inhibition: A Promising Strategy for Patients With EGFR-Mutant NSCLC. J Thorac Oncol. 2021 Feb;16(2):205–215. https://doi.org/10.1016/j.jtho.2020.10.006

25. Wick W, Gorlia T, Bendszus M, Taphoorn M, Sahm F, Harting I, et al. Lomustine and Bevacizumab in Progressive Glioblasto- ma. N Engl J Med. 2017 Nov 16;377(20):1954–1963. https://doi.org/10.1056/nejmoa1707358

26. Goel HL, Mercurio AM. VEGF targets the tumour cell. Nat Rev Cancer. 2013 Dec;13(12):871–882. https://doi.org/10.1038/nrc3627

27. Cruz Da Silva E, Mercier MC, Etienne-Selloum N, Dontenwill M, Choulier L. A Systematic Review of Glioblastoma-Targeted Therapies in Phases II, III, IV Clinical Trials. Cancers (Basel). 2021 Apr 9;13(8):1795. https://doi.org/10.3390/cancers13081795

28. Li X, Wu C, Chen N, Gu H, Yen A, Cao L, Wang E, Wang L. PI3K/Akt/mTOR signaling pathway and targeted therapy for glio- blastoma. Oncotarget. 2016 May 31;7(22):33440–33450. https://doi.org/10.18632/oncotarget.7961

29. Yu Z, Xie G, Zhou G, Cheng Y, Zhang G, Yao G, et al. NVP-BEZ235, a novel dual PI3K-mTOR inhibitor displays anti-glioma ac- tivity and reduces chemoresistance to temozolomide in human glioma cells. Cancer Lett. 2015 Oct 10;367(1):58–68. https://doi.org/10.1016/j.canlet.2015.07.007

30. Yang Z, Guo Q, Wang Y, Chen K, Zhang L, Cheng Z, et al. AZD3759, a BBB-penetrating EGFR inhibitor for the treatment of EGFR mutant NSCLC with CNS metastases. Sci Transl Med. 2016 Dec 7;8(368):368ra172. https://doi.org/10.1126/scitranslmed.aag0976

31. Westphal M, Maire CL, Lamszus K. EGFR as a Target for Glioblastoma Treatment: An Unfulfilled Promise. CNS Drugs. 2017 Sep;31(9):723–735. https://doi.org/10.1007/s40263-017-0456-6

32. Wolin E, Mita A, Mahipal A, Meyer T, Bendell J, Nemunaitis J, et al. A phase 2 study of an oral mTORC1/mTORC2 kinase inhibitor (CC-223) for non-pancreatic neuroendocrine tumors with or without carcinoid symptoms. PLoS One. 2019 Sep 17;14(9):e0221994. https://doi.org/10.1371/journal.pone.0221994

33. Massacesi C, Di Tomaso E, Urban P, Germa C, Quadt C, Trandafir L, et al. PI3K inhibitors as new cancer therapeutics: impli- cations for clinical trial design. Onco Targets Ther. 2016 Jan 7;9:203–210. https://doi.org/10.2147/ott.s89967

34. Wahl M, Chang SM, Phillips JJ, Molinaro AM, Costello JF, Mazor T, et al. Probing the phosphatidylinositol 3-kinase/mam- malian target of rapamycin pathway in gliomas: A phase 2 study of everolimus for recurrent adult low-grade gliomas. Cancer. 2017 Dec 1;123(23):4631–4639. https://doi.org/10.1002/cncr.30909

35. Beaufils F, Cmiljanovic N, Cmiljanovic V, Bohnacker T, Melone A, Marone R, et al. 5-(4, 6-Dimorpholino-1, 3, 5-triazin-2-yl)-4-(tri- fluoromethyl) pyridin-2-amine (PQR309), a potent, brain-penetrant, orally bioavailable, pan-class I PI3K/mTOR inhibitor as clinical candidate in oncology. J Med Chem. 2017 Sep 14;60(17):7524–7538. https://doi.org/10.1021/acs.jmedchem.7b00930

36. Behrooz AB, Syahir A. Could We Address the Interplay Between CD133, Wnt/β-Catenin, and TERT Signaling Pathways as a Potential Target for Glioblastoma Therapy? Front Oncol. 2021 Apr 1;11:642719. https://doi.org/10.3389/fonc.2021.642719

37. Delgado-López PD, Riñones-Mena E, Corrales-García EM. Treatment-related changes in glioblastoma: a review on the con- troversies in response assessment criteria and the concepts of true progression, pseudoprogression, pseudoresponse and radionecrosis. Clin Transl Oncol. 2018 Aug;20(8):939–953. https://doi.org/10.1007/s12094-017-1816-x

38. Lapointe S, Mason W, MacNeil M, Harlos C, Tsang R, Sederias J, et al. A phase I study of vistusertib (dual mTORC1/2 inhib- itor) in patients with previously treated glioblastoma multiforme: a CCTG study. Invest New Drugs. 2020 Aug;38(4):1137–1144. https://doi.org/10.1007/s10637-019-00875-4

39. Alzahrani AS. PI3K/Akt/mTOR inhibitors in cancer: At the bench and bedside. Semin Cancer Biol. 2019 Dec;59:125–132. https://doi.org/10.18632/oncotarget.7961

40. Carlsson SK, Brothers SP, Wahlestedt C. Emerging treatment strategies for glioblastoma multiforme. EMBO Mol Med. 2014 Nov;6(11):1359–1370. https://doi.org/10.15252/emmm.201302627

41. Jiapaer S, Furuta T, Tanaka S, Kitabayashi T, Nakada M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol Med Chir (Tokyo). 2018 Oct 15;58(10):405–421. https://doi.org/10.2176/nmc.ra.2018-0141

42. Hodges TR, Ferguson SD, Heimberger AB. Immunotherapy in glioblastoma: emerging options in precision medicine. CNS Oncol. 2016 Jul;5(3):175–186. https://doi.org/10.2217/cns-2016-0009

43. Tivnan A, Heilinger T, Lavelle EC, Prehn JH. Advances in immunotherapy for the treatment of glioblastoma. J Neurooncol. 2017 Jan;131(1):1–9. https://doi.org/10.1007/s11060-016-2299-2

44. Sanders S, Debinski W. Challenges to Successful Implementation of the Immune Checkpoint Inhibitors for Treatment of Glioblastoma. Int J Mol Sci. 2020 Apr 16;21(8):2759. https://doi.org/10.3390/ijms21082759

45. Lim M, Xia Y, Bettegowda C, Weller M. Current state of immunotherapy for glioblastoma. Nat Rev Clin Oncol. 2018 Jul;15(7):422–442. https://doi.org/10.1038/s41571-018-0003-5

46. Reardon DA, Brandes AA, Omuro A, Mulholland P, Lim M, Wick A, et al. Effect of nivolumab vs bevacizumab in patients with recurrent glioblastoma: the CheckMate 143 phase 3 randomized clinical trial. JAMA Oncol. 2020 Jul 1;6(7):1003–1010. https://doi.org/10.1001/jamaoncol.2020.1024

47. Majc B, Novak M, Kopitar-Jerala N, Jewett A, Breznik B. Immunotherapy of Glioblastoma: Current Strategies and Challenges in Tumor Model Development. Cells. 2021 Jan 29;10(2):265. https://doi.org/10.3390/cells10020265

48. Farber SH, Elsamadicy AA, Atik AF, Suryadevara CM, Chongsathidkiet P, Fecci PE, et al. The Safety of available immunother- apy for the treatment of glioblastoma. Expert Opin Drug Saf. 2017 Mar;16(3):277–287. https://doi.org/10.1080/14740338.2017.1273898

49. Wang X, Lu J, Guo G, Yu J. Immunotherapy for recurrent glioblastoma: practical insights and challenging prospects. Cell Death Dis. 2021 Mar 19;12(4):299. https://doi.org/10.1038/s41419-021-03568-0

50. Suryadevara CM, Verla T, Sanchez-Perez L, Reap EA, Choi BD, Fecci PE, Sampson JH. Immunotherapy for malignant glioma. Surg Neurol Int. 2015 Feb 13;6(Suppl 1):S68–77. https://doi.org/10.4103/2152-7806.151341

51. Farber SH, Elsamadicy AA, Atik AF, Suryadevara CM, Chongsathidkiet P, Fecci PE, et al. The Safety of available immunother- apy for the treatment of glioblastoma. Expert Opin Drug Saf. 2017 Mar;16(3):277–287. https://doi.org/10.1080/14740338.2017.1273898

52. Nguyen HM, Guz-Montgomery K, Lowe DB, Saha D. Pathogenetic Features and Current Management of Glioblastoma. Can- cers (Basel). 2021 Feb 18;13(4):856. https://doi.org/10.3390/cancers13040856

53. Seleci DA, Seleci M, Walter J-G, Stahl F, Scheper T, et al. Niosomes as nanoparticular drug carriers: fundamentals and recent applications. Journal of Nanomaterials. 2016. https://doi.org/10.1155/2016/7372306

54. Chaurasia S, Dogra SS. Transfersomes: Novel approach for intranasal delivery. European Journal of Pharmaceutical and Medical Research. 2017;4(3):192–203.

55. Duan Y, Dhar A, Patel C, Khimani M, Neogi S, Sharma P, et al. A brief review on solid lipid nanoparticles: part and parcel of contemporary drug delivery systems. RSC Adv. 2020 Jul 17;10(45):26777–26791. https://doi.org/10.1039/d0ra03491f

56. Kapadia CH, Melamed JR, Day ES. Spherical Nucleic Acid Nanoparticles: Therapeutic Potential. BioDrugs. 2018 Aug;32(4):297–309. https://doi.org/10.1007/s40259-018-0290-5

57. Liu Q, Duo Y, Fu J, Qiu M, Sun Zh, Adahet D, et al. Nano-immunotherapy: Unique mechanisms of nanomaterials in synergizing cancer immunotherapy. Nano Today. 2021;36:101023. https://doi.org/10.1016/j.nantod.2020.101023

58. Alphandéry E. Nano-Therapies for Glioblastoma Treatment. Cancers (Basel). 2020 Jan 19;12(1):242. https://doi.org/10.3390/cancers12010242

59. Michael JS, Lee BS, Zhang M, Yu JS. Nanotechnology for Treatment of Glioblastoma Multiforme. J Transl Int Med. 2018 Oct 9;6(3):128–133. https://doi.org/10.2478/jtim-2018-0025


Supplementary files

Review

For citations:


Kuznetsova N.S., Gurova S.V., Goncharova A.S., Zaikina E.V., Gusareva M.A., Zinkovich M.S. Modern approaches to glioblastoma therapy. South Russian Journal of Cancer. 2023;4(1):52-64. https://doi.org/10.37748/2686-9039-2023-4-1-6. EDN: IICMMC

Views: 544


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9039 (Online)