Preview

South Russian Journal of Cancer

Advanced search

Mitochondrial transplantation: new challenges for cancer

https://doi.org/10.37748/2686-9039-2024-5-1-7

EDN: YMKXII

Abstract

This review discusses the uniqueness of mitochondria providing normal cellular functions and at the same time involved in many pathological conditions, and also analyzes the scientific literature to clarify the effectiveness of mitochondrial transplantation in cancer treatment. Being important and semi-autonomous organelles in cells, they are able to adapt their functions to the needs of the corresponding organ. The ability of mitochondria to reprogram is important for all cell types that can switch between resting and proliferation. At the same time, tumor mitochondria undergo adaptive changes to accelerate the reproduction of tumor cells in an acidic and hypoxic microenvironment. According to emerging data, mitochondria can go beyond the boundaries of cells and move between the cells of the body. Intercellular transfer of mitochondria occurs naturally in humans as a normal mechanism for repairing damaged cells. The revealed physiological mitochondrial transfer has become the basis for a modern form of mitochondrial transplantation, including autologous (isogenic), allogeneic, and even xenogenic transplantation. Currently, exogenous healthy mitochondria are used in treatment of several carcinomas, including breast cancer, pancreatic cancer, and glioma. Investigation of the functional activity of healthy mitochondria demonstrated and confirmed the fact that female mitochondria are more efficient in suppressing tumor cell proliferation than male mitochondria. However, tissue-specific sex differences in mitochondrial morphology and oxidative capacity were described, and few studies showed functional sex differences in mitochondria during therapy. The reviewed studies report that mitochondrial transplantation can be specifically targeted to a tumor, providing evidence for changes in tumor function after mitochondrial administration. Thus, the appearance of the most interesting data on the unique functions of mitochondria indicates the obvious need for mitochondrial transplantation.

About the Authors

O. I. Kit
National Medical Research Centre for Oncology
Russian Federation

Oleg I. Kit – Academician at the Russian Academy of Sciences, Dr. Sci. (Med.), professor, general director, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0003-3061-6108, SPIN: 1728-0329, AuthorID: 343182, ResearcherID: U-2241-2017, Scopus Author ID: 55994103100


Competing Interests:

the authors state that there are no conflicts of interest to disclose



E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

Elena M. Frantsiyants – Dr. Sci. (Biol.), professor, deputy CEO for science, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0003-3618-6890, SPIN: 9427-9928, AuthorID: 462868, ResearcherID: Y-1491-2018, Scopus Author ID: 55890047700


Competing Interests:

the authors state that there are no conflicts of interest to disclose



A. I. Shikhlyarova
National Medical Research Centre for Oncology
Russian Federation

Alla I. Shikhlyarova – Dr. Sci. (Biol.), professor, senior researcher, Laboratory of Study of Malignant Tumor Pathogenesis, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0003-2943-7655, SPIN: 6271-0717, AuthorID: 482103, ResearcherID: Y-6275-2018, Scopus Author ID: 6507723229


Competing Interests:

the authors state that there are no conflicts of interest to disclose



I. V. Neskubina
National Medical Research Centre for Oncology
Russian Federation

Irina V. Neskubina – Cand. Sci. (Biol.), senior researcher at the Laboratory for the Study of the Pathogenesis of Malignant Tumors, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-7395-3086, SPIN: 3581-8531, AuthorID: 794688, ResearcherID: AAG-8731-2019, Scopus Author ID: 6507509066


Competing Interests:

the authors state that there are no conflicts of interest to disclose



References

1. Schirrmacher V. Mitochondria at Work: New Insights into Regulation and Dysregulation of Cellular Energy Supply and Metabolism. Biomedicines. 2020 Nov 22;8(11):526. https://doi.org/10.3390/biomedicines8110526

2. Simoes ICM, Morciano G, Lebiedzinska-Arciszewska M, Aguiari G, Pinton P, Potes Y, et al. The mystery of mitochondria-ER contact sites in physiology and pathology: A cancer perspective. Biochim Biophys Acta Mol Basis Dis. 2020 Oct 1;1866(10):165834. https://doi.org/10.1016/j.bbadis.2020.165834

3. Bruni F. Mitochondria: From Physiology to Pathology. Life (Basel). 2021 Sep 21;11(9):991. https://doi.org/10.3390/life11090991

4. Kit OI, Frantsiyants EM, Neskubina IV, Cheryarina ND, Shikhlyarova AI, Przhedetskiy YuV, et al. Influence of standard and stimulated growth of B16/F10 melanoma on AIF levels in mitochondria in cells of the heart and other somatic organs in female mice. Cardiometry. 2021;(18):113–120. https://doi.org/10.18137/cardiometry.2021.18.113120, EDN: UYZTGH

5. Popov LD. One step forward: extracellular mitochondria transplantation. Cell Tissue Res. 2021 Jun;384(3):607–612. https://doi.org/10.1007/s00441-021-03428-5

6. Xu Y, Yu Y, Yang B, Hui J, Zhang C, Fang H, et al. Extracellular Mitochondrial Components and Effects on Cardiovascular Disease. DNA Cell Biol. 2021 Sep;40(9):1131–1143. https://doi.org/10.1089/dna.2021.0087

7. Zhou H, Ren J, Toan S, Mui D. Role of mitochondrial quality surveillance in myocardial infarction: From bench to bedside. Ageing Res Rev. 2021 Mar;66:101250. https://doi.org/10.1016/j.arr.2020.101250

8. Kossenkov AV, Milcarek A, Notta F, Jang GH, Wilson JM, Gallinger S, et al. Mitochondrial fitness and cancer risk. PLoS One. 2022;17(10):e0273520. https://doi.org/10.1371/journal.pone.0273520

9. Bock FJ, Tait SWG. Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 2020 Feb;21(2):85–100. https://doi.org/10.1038/s41580-019-0173-8

10. Hayes JD, Dinkova-Kostova AT, Tew KD. Oxidative Stress in Cancer. Cancer Cell. 2020 Aug 10;38(2):167–197. https://doi.org/10.1016/j.ccell.2020.06.001

11. Martinez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 2020 Sep;585(7824):288–292. https://doi.org/10.1038/s41586-020-2475-6

12. Lee JH, Park A, Oh KJ, Lee SC, Kim WK, Bae KH. The role of adipose tissue mitochondria: regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 2019 Oct 4;20(19):4924. https://doi.org/10.3390/ijms20194924

13. Liu Z, Sun Y, Qi Z, Cao L, Ding S. Mitochondrial transfer/transplantation: an emerging therapeutic approach for multiple diseases. Cell Biosci. 2022 May 19;12(1):66. https://doi.org/10.1186/s13578-022-00805-7

14. Jing X, Yang F, Shao C, Wei K, Xie M, Shen H, et al. Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 2019 Nov 11;18(1):157. https://doi.org/10.1186/s12943-019-1089-9

15. Dong L, Gopalan V, Holland O, Neuzil J. Mitocans Revisited: Mitochondrial Targeting as Efficient Anti-Cancer Therapy. Int J Mol Sci. 2020 Oct 26;21(21):7941. https://doi.org/10.3390/ijms21217941

16. Jia D, Park JH, Jung KH, Levine H, Kaipparettu BA. Elucidating the Metabolic Plasticity of Cancer: Mitochondrial Reprogramming and Hybrid Metabolic States. Cells. 2018 Mar 13;7(3):21. https://doi.org/10.3390/cells7030021

17. Li J, Agarwal E, Bertolini I, Seo JH, Caino MC, Ghosh JC, et al. The mitophagy effector FUNDC1 controls mitochondrial reprogramming and cellular plasticity in cancer cells. Sci Signal. 2020 Jul 28;13(642):eaaz8240. https://doi.org/10.1126/scisignal.aaz8240

18. Damaghi M, West J, Robertson-Tessi M, Xu L, Ferrall-Fairbanks MC, Stewart PA, et al. The harsh microenvironment in early breast cancer selects for a Warburg phenotype. Proc Natl Acad Sci U S A. 2021 Jan 19;118(3):e2011342118. https://doi.org/10.1073/pnas.2011342118

19. Humpton TJ, Alagesan B, DeNicola GM, Lu D, Yordanov GN, Leonhardt CS, et al. Oncogenic KRAS Induces NIX-Mediated Mitophagy to Promote Pancreatic Cancer. Cancer Discov. 2019 Sep;9(9):1268–1287. https://doi.org/10.1158/2159-8290.CD-18-1409

20. Margulis L. Symbiotic theory of the origin of eukaryotic organelles; criteria for proof. Symp Soc Exp Biol. 1975;(29):21–38.

21. Hosseinian S, Ali Pour P, Kheradvar A. Prospects of mitochondrial transplantation in clinical medicine: Aspirations and challenges. Mitochondrion. 2022 Jul;65:33–44. https://doi.org/10.1016/j.mito.2022.04.006

22. Singh B, Modica-Napolitano JS, Singh KK. Defining the momiome: Promiscuous information transfer by mobile mitochondria and the mitochondrial genome. Semin Cancer Biol. 2017 Dec;47:1–17. https://doi.org/10.1016/j.semcancer.2017.05.004

23. Shanmughapriya S, Langford D, Natarajaseenivasan K. Inter and Intracellular mitochondrial trafficking in health and disease. Ageing Res Rev. 2020 Sep;62:101128. https://doi.org/10.1016/j.arr.2020.101128

24. Levoux J, Prola A, Lafuste P, Gervais M, Chevallier N, Koumaiha Z, et al. Platelets Facilitate the Wound-Healing Capability of Mesenchymal Stem Cells by Mitochondrial Transfer and Metabolic Reprogramming. Cell Metab. 2021 Feb 2;33(2):283– 299. https://doi.org/10.1016/j.cmet.2020.12.006

25. Walters HE, Cox LS. Intercellular Transfer of Mitochondria between Senescent Cells through Cytoskeleton-Supported Intercellular Bridges Requires mTOR and CDC42 Signalling. Oxid Med Cell Longev. 2021;2021:6697861. https://doi.org/10.1155/2021/6697861

26. Ali Pour P, Hosseinian S, Kheradvar A. Mitochondrial transplantation in cardiomyocytes: foundation, methods, and outcomes. Am J Physiol Cell Physiol. 2021 Sep 1;321(3):C489–C503. https://doi.org/10.1152/ajpcell.00152.2021

27. Doulamis IP, Guariento A, Duignan T, Kido T, Orfany A, Saeed MY, et al. Mitochondrial transplantation by intra-arterial injection for acute kidney injury. Am J Physiol Renal Physiol. 2020 Sep 1;319(3):F403–F413. https://doi.org/10.1152/ajprenal.00255.2020

28. Park A, Oh M, Lee SJ, Oh KJ, Lee EW, Lee SC, et al. Mitochondrial Transplantation as a Novel Therapeutic Strategy for Mitochondrial Diseases. Int J Mol Sci. 2021 Apr 30;22(9):4793. https://doi.org/10.3390/ijms22094793

29. Russell OM, Gorman GS, Lightowlers RN, Turnbull DM. Mitochondrial Diseases: Hope for the Future. Cell. 2020 Apr 2;181(1):168–188. https://doi.org/10.1016/j.cell.2020.02.051

30. Sidarala V, Pearson GL, Parekh VS, Thompson B, Christen L, Gingerich MA, et al. Mitophagy protects β cells from inflammatory damage in diabetes. JCI Insight. 2020 Dec 17;5(24):e141138. https://doi.org/10.1172/jci.insight.141138

31. Kitani T, Kami D, Kawasaki T, Nakata M, Matoba S, Gojo S. Direct human mitochondrial transfer: a novel concept based on the endosymbiotic theory. Transplant Proc. 2014 May;46(4):1233–1236. https://doi.org/10.1016/j.transproceed.2013.11.133

32. Katrangi E, D’Souza G, Boddapati SV, Kulawiec M, Singh KK, Bigger B, et al. Xenogenic transfer of isolated murine mitochondria into human rho0 cells can improve respiratory function. Rejuvenation Res. 2007 Dec;10(4):561–570. https://doi.org/10.1089/rej.2007.0575

33. Doulamis IP, Guariento A, Duignan T, Orfany A, Kido T, Zurakowski D, et al. Mitochondrial transplantation for myocardial protection in diabetic hearts. Eur J Cardiothorac Surg. 2020 May 1;57(5):836–845. https://doi.org/10.1093/ejcts/ezz326

34. Lin HC, Liu SY, Lai HS, Lai IR. Isolated mitochondria infusion mitigates ischemia-reperfusion injury of the liver in rats. Shock. 2013 Mar;39(3):304–310. https://doi.org/10.1097/SHK.0b013e318283035f

35. Blitzer D, Guariento A, Doulamis IP, Shin B, Moskowitzova K, Barbieri GR, et al. Delayed Transplantation of Autologous Mitochondria for Cardioprotection in a Porcine Model. Ann Thorac Surg. 2020 Mar;109(3):711–719. https://doi.org/10.1016/j.athoracsur.2019.06.075

36. Huang PJ, Kuo CC, Lee HC, Shen CI, Cheng FC, Wu SF, et al. Transferring Xenogenic Mitochondria Provides Neural Protection Against Ischemic Stress in Ischemic Rat Brains. Cell Transplant. 2016;25(5):913–927. https://doi.org/10.3727/096368915X689785

37. Patananan AN, Sercel AJ, Wu TH, Ahsan FM, Torres A, Kennedy SAL, et al. Pressure-Driven Mitochondrial Transfer Pipeline Generates Mammalian Cells of Desired Genetic Combinations and Fates. Cell Rep. 2020 Dec 29;33(13):108562. https://doi.org/10.1016/j.celrep.2020.108562

38. Lindqvist D, Wolkowitz OM, Picard M, Ohlsson L, Bersani FS, Fernström J, et al. Circulating cell-free mitochondrial DNA, but not leukocyte mitochondrial DNA copy number, is elevated in major depressive disorder. Neuropsychopharmacology. 2018 Jun;43(7):1557–1564. https://doi.org/10.1038/s41386-017-0001-9

39. Miller B, Kim SJ, Kumagai H, Mehta HH, Xiang W, Liu J, et al. Peptides derived from small mitochondrial open reading frames: Genomic, biological, and therapeutic implications. Exp Cell Res. 2020 Aug 15;393(2):112056. https://doi.org/10.1016/j.yexcr.2020.112056

40. Picca A, Beli R, Calvani R, Coelho-Júnior HJ, Landi F, Bernabei R, et al. Older Adults with Physical Frailty and Sarcopenia Show Increased Levels of Circulating Small Extracellular Vesicles with a Specific Mitochondrial Signature. Cells. 2020 Apr 15;9(4):973. https://doi.org/10.3390/cells9040973

41. Sahinbegovic H, Jelinek T, Hrdinka M, Bago JR, Turi M, Sevcikova T, et al. Intercellular Mitochondrial Transfer in the Tumor Microenvironment. Cancers (Basel). 2020 Jul 4;12(7):1787. https://doi.org/10.3390/cancers12071787

42. Roh JS, Sohn DH. Damage-Associated Molecular Patterns in Inflammatory Diseases. Immune Netw. 2018 Aug;18(4):e27. https://doi.org/10.4110/in.2018.18.e27

43. Elliott RL, Jiang XP, Head JF. Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res Treat. 2012 Nov;136(2):347– 354. https://doi.org/10.1007/s10549-012-2283-2

44. Rushande AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology. 2019 Apr;71(2):647–663. https://doi.org/10.1007/s10616-019-00302-9

45. Fu A., Hou Y., Yu Z., Zhao Z., Liu X. Healthy mitochondria inhibit the metastatic melanoma in lungs. Int J Biol Sci. 2019;15:2707– 2718. https://doi.org/10.7150/ijbs.38104

46. Chang JC, Chang HS, Wu YC, Cheng WL, Lin TT, Chang HJ, et al. Mitochondrial transplantation regulates antitumour activity, chemoresistance and mitochondrial dynamics in breast cancer. J Exp Clin Cancer Res. 2019 Jan 23;38(1):30. https://doi.org/10.1186/s13046-019-1028-z

47. Sun C, Liu X, Wang B, Wang Z, Liu Y, Di C, et al. Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 2019;9(12):3595–3607. https://doi.org/10.7150/thno.33100

48. Al Amir Dache Z, Otandault A, Tanos R, Pastor B, Meddeb R, Sanchez C, et al. Blood contains circulating cell-free respiratory competent mitochondria. FASEB J. 2020 Mar;34(3):3616–3630. https://doi.org/10.1096/fj.201901917RR

49. Zhao Z, Yu Z, Hou Y, Zhang L, Fu A. Improvement of cognitive and motor performance with mitotherapy in aged mice. Int J Biol Sci. 2020;16(5):849–858. https://doi.org/10.7150/ijbs.40886

50. Fu A. Mitotherapy as a Novel Therapeutic Strategy for Mitochondrial Diseases. Curr Mol Pharmacol. 2020;13(1):41–49. https://doi.org/10.2174/1874467212666190920144115

51. Desdín-Micó G, Soto-Heredero G, Aranda JF, Oller J, Carrasco E, Gabandé-Rodríguez E, et al. T cells with dysfunctional mitochondria induce multimorbidity and premature senescence. Science. 2020 Jun 19;368(6497):1371–1376. https://doi.org/10.1126/science.aax0860

52. Chen Y, Yang F, Chu Y, Yun Z, Yan Y, Jin J. Mitochondrial transplantation: opportunities and challenges in the treatment of obesity, diabetes, and nonalcoholic fatty liver disease. J Transl Med. 2022 Oct 22;20(1):483. https://doi.org/10.1186/s12967-022-03693-0

53. Roushandeh AM, Kuwahara Y, Roudkenar MH. Mitochondrial transplantation as a potential and novel master key for treatment of various incurable diseases. Cytotechnology. 2019 Apr;71(2):647–663. https://doi.org/10.1007/s10616-019-00302-9

54. McCully JD, Cowan DB, Emani SM, Del Nido PJ. Mitochondrial transplantation: From animal models to clinical use in humans. Mitochondrion. 2017 May;34:127–134. https://doi.org/10.1016/j.mito.2017.03.004

55. Ramirez-Barbieri G, Moskowitzova K, Shin B, Blitzer D, Orfany A, Guariento A, et al. Alloreactivity and allorecognition of syngeneic and allogeneic mitochondria. Mitochondrion. 2019 May;46:103–115. https://doi.org/10.1016/j.mito.2018.03.002

56. Ventura-Clapier R, Moulin M, Piquereau J, Lemaire C, Mericskay M, Veksler V, et al. Mitochondria: a central target for sex differences in pathologies. Clin Sci (Lond). 2017 May 1;131(9):803–822. https://doi.org/10.1042/CS20160485

57. Beaudry KM, Devries MC. Sex-based differences in hepatic and skeletal muscle triglyceride storage and metabolism 1. Appl Physiol Nutr Metab. 2019 Aug;44(8):805–813. https://doi.org/10.1139/apnm-2018-0635

58. Demarest TG, McCarthy MM. Sex differences in mitochondrial (dys)function: Implications for neuroprotection. J Bioenerg Biomembr. 2015 Apr;47(1–2):173–188. https://doi.org/10.1007/s10863-014-9583-7

59. Yu Z, Hou Y, Zhou W, Zhao Z, Liu Z, Fu A. The effect of mitochondrial transplantation therapy from different gender on inhibiting cell proliferation of malignant melanoma. Int J Biol Sci. 2021;17(8):2021–2033. https://doi.org/10.7150/ijbs.59581


Supplementary files

Review

For citations:


Kit O.I., Frantsiyants E.M., Shikhlyarova A.I., Neskubina I.V. Mitochondrial transplantation: new challenges for cancer. South Russian Journal of Cancer. 2024;5(1):60-70. https://doi.org/10.37748/2686-9039-2024-5-1-7. EDN: YMKXII

Views: 406


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9039 (Online)