Preview

South Russian Journal of Cancer

Advanced search

Methods for modeling tumor growth in mice in experimental studies of human gastric cancer

https://doi.org/10.37748/2686-9039-2021-2-4-4

Abstract

Gastric cancer (GC) is a group of malignant tumors originating from the gastric mucosa cells. The highest incidence of GC is recorded in Japan, China and Russia, and the lowest one in the USA and New Zealand. Extensive molecular genetic research of GC has revealed its heterogeneity associated with the genomic instability of the tumor and the complexity of its phenotype due to simultaneous changes in several oncogenes and suppressors. This was the basis for the creation of the GC classification by molecular subtypes. The creation of a realistic preclinical model is essential for translational GC studies. Cancer cell lines and xenografts derived from them are among the most common preclinical models. They are easy to generate, but they also have limitations, since these models cannot sufficiently reproduce the unique characteristics of each cancer patient. Patient-derived xenografts (PDX) are currently the best model for testing targets and predictors of response to therapy. PDX models are created by transplanting surgically resected human tumors into immunodeficient mice. These models maintain morphological similarity and replicate the molecular characteristics of parental tumors providing an indispensable tool for assessing anticancer drug response. Statistical data from preclinical studies with PDX models can significantly save the time and resources required for clinical trials. Transgenic and knockout mouse models are also widely used in scientific laboratories in order to study specific genetic pathways of oncogenesis and develop experimental therapy for GC. This review discusses the molecular classifications of GC and experimental murine models that reproduce cancer in situ and are a universal platform for preclinical research in experimental oncology.

About the Authors

A. A. Kiblitskaya
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Aleksandra A. Kiblitskaya – research fellow

SPIN: 2437-4102

AuthorID: 610872

63 14 line str., Rostov-on-Don 344037



T. S. Karasev
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Timofei S. Karasev – resident

63 14 line str., Rostov-on-Don 344037



A. S. Goncharova
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Anna S. Goncharova – Cand. Sci. (Biol.), head of the testing laboratory center

SPIN: 7512-2039

AuthorID: 553424

63 14 line str., Rostov-on-Don 344037



A. Yu. Maksimov
National Medical Research Centre for Oncology of the Ministry of Health of Russia
Russian Federation

Aleksei Yu. Maksimov – Dr. Sci. (Med.), Professor, Deputy General Director for Advanced Scientific Research

SPIN: 7322-5589

AuthorID: 710705

63 14 line str., Rostov-on-Don 344037



References

1. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J Clin. 2021 May;71(3):209–249. https://doi.org/10.3322/caac.21660

2. Haye T. Review on Gastric Cancer. NACS. 2019 Aug 2;3(1):1–2. https://doi.org/10.31031/NACS.2019.03.000555

3. Захаренко А. А., Вовин К. Н., Беляев М. А., Трушин А. А., Рыбальченко В. А., Купенская Т. В. Рак желудка: диагностика и лечение: метод. пособие. СПб.: РИЦ ПСПбГМУ, 2018. 36 с.

4. Кит О. И. Нейроэндокринные, клинические и морфологические аспекты рака желудка. Ростов-на-Дону, Новочеркасск: Лик, 2014. 224 с.

5. Sano T, Coit DG, Kim HH, Roviello F, Kassab P, Wittekind C, et al. Proposal of a new stage grouping of gastric cancer for TNM classification: International Gastric Cancer Association staging project. Gastric Cancer. 2017 Mar;20(2):217–225. https://doi.org/10.1007/s10120-016-0601-9

6. Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature. 2014 Sep 11;513(7517):202–209. https://doi.org/10.1038/nature13480

7. De Re V. Molecular Features Distinguish Gastric Cancer Subtypes. Int J Mol Sci. 2018 Oct 11;19(10):E3121. https://doi.org/10.3390/ijms19103121

8. Abe M, Yamashita S, Kuramoto T, Hirayama Y, Tsukamoto T, Ohta T, et al. Global expression analysis of N-methyl-N’-nitro-N-nitrosoguanidine- induced rat stomach carcinomas using oligonucleotide microarrays. Carcinogenesis. 2003 May;24(5):861–867. https://doi.org/10.1093/carcin/bgg030

9. Tatematsu M, Ogawa K, Hoshiya T, Shichino Y, Kato T, Imaida K, et al. Induction of adenocarcinomas in the glandular stomach of BALB/c mice treated with N-methyl-N-nitrosourea. Jpn J Cancer Res. 1992 Sep;83(9):915–918. https://doi.org/10.1111/j.1349-7006.1992.tb01999.x

10. Ito N, Fukushima S, Tsuda H. Carcinogenicity and modification of the carcinogenic response by BHA, BHT, and other antioxidants. Crit Rev Toxicol. 1985;15(2):109–150. https://doi.org/10.3109/10408448509029322

11. Moch RW. Forestomach lesions induced by butylated hydroxyanisole and ethylene dibromide: a scientific and regulatory perspective. Toxicol Pathol. 1988;16(2):172–183. https://doi.org/10.1177/019262338801600210

12. Dey TK, Karmakar BC, Sarkar A, Paul S, Mukhopadhyay AK. A Mouse Model of Helicobacter pylori Infection. Methods Mol Biol. 2021;2283:131–151. https://doi.org/10.1007/978-1-0716-1302-3_14

13. Zhang S, Lee DS, Morrissey R, Aponte-Pieras JR, Rogers AB, Moss SF. Early or late antibiotic intervention prevents Helicobacter pylori-induced gastric cancer in a mouse model. Cancer Lett. 2014 Dec 1;355(1):106–112. https://doi.org/10.1016/j.canlet.2014.09.010

14. Oh ST, Cha J-H, Shin D-J, Yoon SK, Lee SK. Establishment and characterization of an in vivo model for Epstein-Barr virus positive gastric carcinoma. J Med Virol. 2007 Sep;79(9):1343–1348. https://doi.org/10.1002/jmv.20876

15. Yang Z-R, Chen Z-G, Du X-M, Li Y. Apatinib Mesylate Inhibits the Proliferation and Metastasis of Epithelioid Malignant Peritoneal Mesothelioma In Vitro and In Vivo. Front Oncol. 2020;10:585079. https://doi.org/10.3389/fonc.2020.585079

16. Wang TC, Koh TJ, Varro A, Cahill RJ, Dangler CA, Fox JG, et al. Processing and proliferative effects of human progastrin in transgenic mice. J Clin Invest. 1996 Oct 15;98(8):1918–1929. https://doi.org/10.1172/JCI118993

17. Fox JG, Rogers AB, Ihrig M, Taylor NS, Whary MT, Dockray G, et al. Helicobacter pylori-associated gastric cancer in INS-GAS mice is gender specific. Cancer Res. 2003 Mar 1;63(5):942–950.

18. Zavros Y, Eaton KA, Kang W, Rathinavelu S, Katukuri V, Kao JY, et al. Chronic gastritis in the hypochlorhydric gastrin-deficient mouse progresses to adenocarcinoma. Oncogene. 2005 Mar 31;24(14):2354–2366. https://doi.org/10.1038/sj.onc.1208407

19. Oshima H, Matsunaga A, Fujimura T, Tsukamoto T, Taketo MM, Oshima M. Carcinogenesis in mouse stomach by simultaneous activation of the Wnt signaling and prostaglandin E2 pathway. Gastroenterology. 2006 Oct;131(4):1086–1095. https://doi.org/10.1053/j.gastro.2006.07.014

20. Chien W-M, Garrison K, Caufield E, Orthel J, Dill J, Fero ML. Differential gene expression of p27Kip1 and Rb knockout pituitary tumors associated with altered growth and angiogenesis. Cell Cycle. 2007 Mar 15;6(6):750–757. https://doi.org/10.4161/cc.6.6.3986

21. Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, et al. Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett. 2013 Oct 28;340(1):141–147. https://doi.org/10.1016/j.canlet.2013.07.034

22. Leung WK, Wu K, Wong CYP, Cheng ASL, Ching AKK, Chan AWH, et al. Transgenic cyclooxygenase-2 expression and high salt Южно-Российский онкологический журнал 2021, Т. 2, № 4, С. 26-37 Киблицкая А. А. , Карасев Т. С., Гончарова А. С., Максимов А. Ю. / Пути моделирования опухолевого роста у мышей в экспериментальных исследованиях рака желудка человека 36 enhanced susceptibility to chemical-induced gastric cancer development in mice. Carcinogenesis. 2008 Aug;29(8):1648–1654. https://doi.org/10.1093/carcin/bgn156

23. Matkar SS, Durham A, Brice A, Wang TC, Rustgi AK, Hua X. Systemic activation of K-ras rapidly induces gastric hyperplasia and metaplasia in mice. Am J Cancer Res. 2011 Apr 1;1(4):432–445.

24. Tomita H, Takaishi S, Menheniott TR, Yang X, Shibata W, Jin G, et al. Inhibition of gastric carcinogenesis by the hormone gastrin is mediated by suppression of TFF1 epigenetic silencing. Gastroenterology. 2011 Mar;140(3):879–891. https://doi.org/10.1053/j.gastro.2010.11.037

25. Szadvari I, Krizanova O, Babula P. Athymic nude mice as an experimental model for cancer treatment. Physiol Res. 2016 Dec 21;65(Suppl 4):S441–S453. http://doi.org/10.33549/physiolres.933526

26. Stakleff KDS, Von Gruenigen VE. Rodent models for ovarian cancer research. Int J Gynecol Cancer. 2003 Aug;13(4):405–412. http://doi.org/10.1136/ijgc-00009577-200307000-00002

27. Cespedes MV, Casanova I, Parreño M, Mangues R. Mouse models in oncogenesis and cancer therapy. Clin Transl Oncol. 2006 May;8(5):318–329. https://doi.org/10.1007/s12094-006-0177-7

28. Кит С. И., Максимов P. А., Гончарова А. С., Лукбанова Е. А., Карнаухов Н. С., Непомнящая Е. М. и др. Создание пациентоподобной модели рака пищевода на иммунодефицитных мышах. Сибирский онкологический журнал. 2020;19(2):70–75. https://doi.org/10.21294/1814-4861-2020-19-2-70-75

29. Kuwata T, Yanagihara K, Iino Y, Komatsu T, Ochiai A, Sekine S, et al. Establishment of Novel Gastric Cancer Patient-Derived Xenografts and Cell Lines: Pathological Comparison between Primary Tumor, Patient-Derived, and Cell-Line Derived Xenografts. Cells. 2019 Jun 14;8(6):E585. https://doi.org/10.3390/cells8060585

30. Hernandez MC, Bergquist JR, Leiting JL, Ivanics T, Yang L, Smoot RL, et al. Patient-Derived Xenografts Can Be Reliably Generated from Patient Clinical Biopsy Specimens. J Gastrointest Surg. 2019 Apr;23(4):818–824. https://doi.org/10.1007/s11605-019-04109-z

31. Illert B, Otto C, Thiede A, Timmermann W. Detection of disseminated tumor cells in nude mice with human gastric cancer. Clin Exp Metastasis. 2003;20(6):549–554. https://doi.org/10.1023/a:1025862800798

32. Jones-Bolin S, Ruggeri B. Orthotopic models of human gastric carcinoma in nude mice: applications for study of tumor growth and progression. Curr Protoc Pharmacol. 2007 Jun;Chapter 14:Unit 14.4. https://doi.org/10.1002/0471141755.ph1404s37

33. Bhargava S, Hotz B, Buhr HJ, Hotz HG. An orthotopic nude mouse model for preclinical research of gastric cardia cancer. Int J Colorectal Dis. 2009 Jan;24(1):31–39. https://doi.org/10.1007/s00384-008-0584-z

34. Busuttil RA, Liu DS, Di Costanzo N, Schröder J, Mitchell C, Boussioutas A. An orthotopic mouse model of gastric cancer invasion and metastasis. Sci Rep. 2018 Jan 16;8(1):825. https://doi.org/10.1038/s41598-017-19025-y

35. Wang X, Fu R, Hu Y, Du H, Li S, Li Z, et al. EGFR gene status predicts response and survival benefit in a preclinical gastric cancer trial treating patient derived xenografts with cetuximab. Oncol Rep. 2017 Oct;38(4):2387–2393. https://doi.org/10.3892/or.2017.5907

36. Kang Y-K, Rha SY, Tassone P, Barriuso J, Yu R, Szado T, et al. A phase IIa dose-finding and safety study of first-line pertuzumab in combination with trastuzumab, capecitabine and cisplatin in patients with HER2-positive advanced gastric cancer. Br J Cancer. 2014 Aug 12;111(4):660–666. https://doi.org/10.1038/bjc.2014.356

37. Yamashita-Kashima Y, Iijima S, Yorozu K, Furugaki K, Kurasawa M, Ohta M, et al. Pertuzumab in combination with trastuzumab shows significantly enhanced antitumor activity in HER2-positive human gastric cancer xenograft models. Clin Cancer Res. 2011 Aug 1;17(15):5060–5070. https://doi.org/10.1158/1078-0432.CCR-10-2927

38. Chen Z, Huang W, Tian T, Zang W, Wang J, Liu Z, et al. Characterization and validation of potential therapeutic targets based on the molecular signature of patient-derived xenografts in gastric cancer. J Hematol Oncol. 2018 Feb 13;11(1):20. https://doi.org/10.1186/s13045-018-0563-y

39. Chen Z, Liu Z, Zhang M, Huang W, Li Z, Wang S, et al. EPHA2 blockade reverses acquired resistance to afatinib induced by EPHA2-mediated MAPK pathway activation in gastric cancer cells and avatar mice. Int J Cancer. 2019 Nov 1;145(9):2440–2449. https://doi.org/10.1002/ijc.32313

40. Roskoski R. The ErbB/HER family of protein-tyrosine kinases and cancer. Pharmacol Res. 2014 Jan;79:34–74. https://doi.org/10.1016/j.phrs.2013.11.002

41. Byth KF, Thomas A, Hughes G, Forder C, McGregor A, Geh C, et al. AZD5438, a potent oral inhibitor of cyclin-dependent kinases 1, 2, and 9, leads to pharmacodynamic changes and potent antitumor effects in human tumor xenografts. Mol Cancer Ther. 2009 Jul;8(7):1856–1866. https://doi.org/10.1158/1535-7163.MCT-08-0836


Supplementary files

Review

For citations:


Kiblitskaya A.A., Karasev T.S., Goncharova A.S., Maksimov A.Yu. Methods for modeling tumor growth in mice in experimental studies of human gastric cancer. South Russian Journal of Cancer. 2021;2(4):26-37. https://doi.org/10.37748/2686-9039-2021-2-4-4

Views: 658


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9039 (Online)