Practical experience of a lung cancer primary cell culture collection creation at the National Medical Research Centre for Oncology
https://doi.org/10.37748/2686-9039-2022-3-4-2
Abstract
Purpose of the study. Testing of new chemotherapeutic agents in translational and biology medicine needs studies on immortalized cell lines. However, such models do not always have the biological properties of a tumor in situ, in contrast to primary cell cultures. Primary cultures of lung cancer cells have biological, morphological and molecular characteristics close or identical to tumor cells in vivo. Obtaining collections of primary lung cancer cell lines is an important task in creating various models for preclinical studies.
Materials and methods. The materials are represented by postoperative tumor samples obtained from 25 patients with newly diagnosed lung cancer without prior treatment. The following methods were used to obtain primary cultures: enzymatic dissociation in Hanks' solution with the addition of 300 units/ml collagenase I (Thermo Fisher Scientific, USA), enzymatic dissociation using the Brain Tumor Dissoсiation Kit (Miltenyi Biotec, Germany) and 150 units/ml. ml of collagenase I, as well as the method of explants. The following methods were used to remove fibroblasts: the use of the FibrOut™ system (CHI Scientific, USA), magnetic separation of fibroblasts using Anti-Fibroblast MicroBeads (Miltenyi Biotec, Germany), and cold trypsinization.
Results. We have obtained 15 primary lung cancer cell cultures that have passed the zero order passage. In this work, the method of enzymatic dissociation turned out to be the most effective. Incubation of lung tumor samples with collagenase for 1 hour preserves the viability and adhesiveness of the cells. The explant method did not show its effectiveness for long-term cultivation, there was no migration of tumor cells to plastic. Magnetic separation, as a method of removing stromal components of fibroblasts, showed the greatest efficiency, while maintaining the viability of tumor cells.
Conclusion. The obtained primary cell cultures of lung cancer can be used for many tasks of experimental oncology: studies of the biological characteristics of lung cancer, development of preclinical models for the studies on new chemotherapeutic drugs.
About the Authors
I. V. MezhevovaRussian Federation
Irina V. Mezhevova - junior research fellow at the laboratory of cellular technologies,
Rostov-on-Don
SPIN: 3367-1741,
AuthorID: 1011695,
ResearcherID: AAI-1860-2019,
Scopus Author ID: 57296602900
A. O. Sitkovskaya
Anastasiya O. Sitkovskaya - Cand. Sci. (Biol.), the chief of laboratory of cellular technologies,
Rostov-on-Don
SPIN: 9586-2785,
AuthorID: 878784,
ResearcherID: E-7496-2018,
Scopus Author ID: 56381527400
S. Yu. Filippova
Svetlana Yu. Filippova - research fellow at the laboratory of cellular technologies,
Rostov-on-Don
SPIN: 1659-6976,
AuthorID: 791081,
ResearcherID: AAH-4408-2020,
Scopus Author ID: 57189618843
T. V. Shamova
Tatyana V. Shamova - junior research fellow at the laboratory of cellular technologies,
Rostov-on-Don
SPIN: 5426-1873,
AuthorID: 1051985,
ResearcherID: AAR-3198-2021,
Scopus Author ID: 57221303597
S. V. Timofeeva
Sofia V. Timofeeva - research fellow at the laboratory of cellular technologies,
Rostov-on-Don
SPIN: 5362-1915,
AuthorID: 1064599,
ResearcherID: AAH-4834-2020,
Scopus Author ID: 57243356500
N. V. Gnennaya
Nadezhda V. Gnennaya - junior research fellow at the laboratory of cellular technologies,
Rostov-on-Don
SPIN: 9244-2318,
AuthorID: 900758,
ResearcherID: V-5582-2018,
Scopus Author ID: 57214806863
I. A. Novikova
Inna A. Novikova - Cand. Sci. (Med.), deputy chief of sciences,
Rostov-on-Don
SPIN: 4810-2424,
AuthorID: 726229,
ResearcherID: E-7710-2018,
Scopus Author ID: 57202252773
D. A. Kharagezov
Dmitriy A. Kharagezov - Cand. Sci. (Med.), oncologist, chief of thoracic oncology department,
Rostov-on-Don
SPIN: 5120-0561,
AuthorID: 733789,
ResearcherID: AAZ-3638-2021,
Scopus Author ID: 56626499300
A. G. Milakin
Anton G. Milakin - MD, oncologist at the department of thoracic oncology,
Rostov-on-Don
SPIN: 7737-4737,
AuthorID: 794734,
Scopus Author ID: 57192109933
I. A. Leiman
Igor A. Leiman - Cand. Sci. (Med.), oncologist at the department of thoracic oncology,
Rostov-on-Don
SPIN: 2551-0999,
AuthorID:735699,
Scopus Author ID: 57225151943
O. N. Stateshny
Oleg N. Stateshny - MD, oncologist at the department of thoracic oncology,
Rostov-on-Don
SPIN: 9917-1975,
AuthorID: 1067071
E. E. Rostorguev
Eduard E. Rostorguev - Dr. Sci. (Med.), chief of the neuronal oncology department,
Rostov-on-Don
SPIN: 8487-9157,
AuthorID:794808,
Scopus Author ID: 57196005138
D. P. Atmachidi
Dmitriy P. Atmachidi - Cand. Sci. (Med.), neurosurgeon at the department of neuronal oncology,
Rostov-on-Don
SPIN: 6800-1457,
AuthorID: 794785,
Scopus Author ID: 57189576376
T. O. Lapteva
Tatiana O. Lapteva - chief of pathology department,
Rostov-on-Don
SPIN: 2771-3213,
AuthorID: 849370,
Scopus Author ID: 55895197300
M. V. Voloshin
Mark V. Voloshin - MD, pathologist at the department of pathomorphology,
Rostov-on-Don
SPIN: 6122-4084,
AuthorID: 969003,
ResearcherID: С-5601-2018,
Scopus Author ID: 57221474658
K. S. Eremin
Konstantin S. Eremin - MD, pathologist at the pathology department,
Rostov-on-Don
SPIN: 9865-0123,
AuthorID: 1150930,
ResearcherID: AIE-7050-2022
I. A. Suhar
Irina A. Suhar - MD, pathologist at the pathology department,
Rostov-on-Don
SPIN: 8387-1938,
AuthorID: 1147554
References
1. Malignant neoplasms in Russia in 2020 (morbidity and mortality). Ed. by A. D. Kaprin, V. V. Starinsky, A. O. Shakhzadova. Moscow: P. A. Herzen Moscow State Medical Research Institute – Branch of the National Medical Research Radiological Center, 2021, 252 p. (In Russ.). Available at: https://oncology-association.ru/wp-content/uploads/2021/11/zis-2020-elektronnaya-versiya.pdf, Accessed: 29.10.2022.
2. Saab S, Zalzale H, Rahal Z, Khalifeh Y, Sinjab A, Kadara H. Insights Into Lung Cancer Immune-Based Biology, Prevention, and Treatment. Front Immunol. 2020;11:159. https://doi.org/10.3389/fimmu.2020.00159
3. Leitão de Sousa VM, Carvalho L. Heterogeneity in lung cancer. Pathobiology. 2018;85(1-2):96–107. https://doi.org/10.1159/000487440
4. Knight SB, Crosbie PA, Balata H, Chudziak J, Hussell T, Dive C. Progress and prospects of early detection in lung cancer. Open Biol. 2017 Sep;7(9):170070. https://doi.org/10.1098/rsob.170070
5. Li PJ, Roose JP, Jablons DM, Kratz JR. Bioinformatic Approaches to Validation and Functional Analysis of 3D Lung Cancer Models. Cancers (Basel). 2021 Feb 9;13(4):701. https://doi.org/10.3390/cancers13040701
6. Freshni R Ya. Animal cell culture: a practical guide. M.: BINOM, Laboratory of Knowledge, 2010, 691 p. (In Russ.).
7. Le H, Seitlinger J, Lindner V, Olland A, Falcoz PE, Benkirane-Jessel N, et al. Patient-Derived Lung Tumoroids-An Emerging Technology in Drug Development and Precision Medicine. Biomedicines. 2022 Jul 12;10(7):1677. https://doi.org/10.3390/biomedicines10071677
8. Gazdar AF, Girard L, Lockwood WW, Lam WL, Minna JD. Lung cancer cell lines as tools for biomedical discovery and research. J Natl Cancer Inst. 2010 Sep 8;102(17):1310–1321. https://doi.org/10.1093/jnci/djq279
9. Galimova ES, Galagudza MM. Two-dimensional and three-dimensional models of tumor cell cultures in vitro: advantages and disadvantages. Bulletin of Siberian Medicine. 2018;17(3):188–196. (In Russ.).
10. Kutilin DS, Airapetova AG, Anistratov PA, Pyltsyn SP, Leyman IA, Karnaukhov NS, et al. Changes in gene replication in tumor cells and extracellular DNA in patients with lung adenocarcinoma. Bulletin of Experimental Biology and Medicine. 2019;167(6):731–738. (In Russ.).
11. Passaro A, Malapelle U, Del Re M, Attili I, Russo A, Guerini-Rocco E, et al. Understanding EGFR heterogeneity in lung cancer. ESMO Open. 2020 Oct;5(5):e000919. https://doi.org/10.1136/esmoopen-2020-000919
12. Fidler IJ. Biological heterogeneity of cancer: implication to therapy. Hum Vaccin Immunother. 2012 Aug;8(8):1141–1142. https://doi.org/10.4161/hv.19643
13. Zheng C, Sun Y hua, Ye X lei, Chen H quan, Ji H bin. Establishment and characterization of primary lung cancer cell lines from Chinese population. Acta Pharmacol Sin. 2011 Mar;32(3):385–392. https://doi.org/10.1038/aps.2010.214
14. Karekla E, Liao WJ, Sharp B, Pugh J, Reid H, Quesne JL, et al. Ex Vivo Explant Cultures of Non-Small Cell Lung Carcinoma Enable Evaluation of Primary Tumor Responses to Anticancer Therapy. Cancer Res. 2017 Apr 15;77(8):2029–2039. https://doi.org/10.1158/0008-5472.CAN-16-1121
15. Herreros-Pomares A, Zhou X, Calabuig-Fariñas S, Lee SJ, Torres S, Esworthy T, et al. 3D printing novel in vitro cancer cell culture model systems for lung cancer stem cell study. Mater Sci Eng C Mater Biol Appl. 2021 Mar;122:111914. https://doi.org/10.1016/j.msec.2021.111914
16. Herreno A, Sanchez M, Rey L, Mejía J, Cañas A, Moreno O, et al. Primary lung cancer cell culture from Transthoracic needle biopsy samples. Cogent Medicine. 2018 Jul 23;5:1503071. https://doi.org/10.1080/2331205X.2018.1503071
17. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends in Biotechnology. 2013 Jun;31(6):347–354. https://doi.org/10.1016/j.tibtech.2013.03.006
18. Filippova SYu, Sitkovskaya AO, Sagakyants AB, Bondarenko ES, Vashchenko LN, Kechedzhieva EE, et al. Isolation of tumor stem cells of breast cancer using collagenase. Modern problems of science and education. 2019;(6):147. (In Russ.).
19. Seo J, Park SJ, Kim J, Choi SJ, Moon SH, Chung HM. Effective method for the isolation and proliferation of primary lung cancer cells from patient lung tissues. Biotechnol Lett. 2013 Aug;35(8):1165–1174. https://doi.org/10.1007/s10529-013-1189-3
20. Kisselbach L, Merges M, Bossie A, Boyd A. CD90 Expression on human primary cells and elimination of contaminating fibroblasts from cell cultures. Cytotechnology. 2009 Jan;59(1):31–44. https://doi.org/10.1007/s10616-009-9190-3
21. Dai Y, Guo S, Huang S, Zhang J, Zhang Z. Summary of primary culture of human lung cancer cells. Austin J Cancer Clin Res. 2018;5(1):1083.
22. Boucherit N, Gorvel L, Olive D. 3D Tumor Models and Their Use for the Testing of Immunotherapies. Front Immunol. 2020;11:603640. https://doi.org/10.3389/fimmu.2020.603640
23. Green ML, Breite AG, Beechler CA, Dwulet FE, McCarthy RC. Effectiveness of different molecular forms of C. histolyticum class I collagenase to recover islets. Islets. 2017 Nov 2;9(6):177–181. https://doi.org/10.1080/19382014.2017.1365996
24. Powley IR, Patel M, Miles G, Pringle H, Howells L, Thomas A, et al. Patient-derived explants (PDEs) as a powerful preclinical platform for anti-cancer drug and biomarker discovery. Br J Cancer. 2020 Mar;122(6):735–744. https://doi.org/10.1038/s41416-019-0672-6
25. Shamova TV, Sitkovskaya AO, Rastorguev EE, Kuznetsova NS, Kavitsky SE. Obtaining primary cell lines of glial tumors. Perm Medical Journal. 2020;37(5):79–89. (In Russ.).
26. Mezhevova IV, Shamova TV, Sitkovskaya AO, Shevchenko AN, Shvyrev DA, Filatova EV, et al. The experience of creating a primary culture of prostate cancer in vitro. Modern Problems of Science and Education. 2020;5:91. (In Russ.).
27. Gentles AJ, Hui ABY, Feng W, Azizi A, Nair RV, Bouchard G, et al. A human lung tumor microenvironment interactome identifies clinically relevant cell-type cross-talk. Genome Biol. 2020 May 7;21(1):107. https://doi.org/10.1186/s13059-020-02019-x
28. Serebriiskii I, Castelló-Cros R, Lamb A, Golemis EA, Cukierman E. Fibroblast-derived 3D matrix differentially regulates the growth and drug-responsiveness of human cancer cells. Matrix Biol. 2008 Jul;27(6):573–585. https://doi.org/10.1016/j.matbio.2008.02.008
29. Xu Y, Hu YD, Zhou J, Zhang MH. Establishing a lung cancer stem cell culture using autologous intratumoral fibroblasts as feeder cells. Cell Biol Int. 2011 May;35(5):509–517. https://doi.org/10.1042/CBI20100473
30. Yan X, Zhou L, Wu Z, Wang X, Chen X, Yang F, et al. High throughput scaffold-based 3D micro-tumor array for efficient drug screening and chemosensitivity testing. Biomaterials. 2019 Apr;198:167–179.
31. Wu R. Growth of Human Lung Tumor Cells in Culture. 2005, 1–21 p. https://doi.org/10.1002/0471722782.ch1
32. Tiran V, Lindenmann J, Brcic L, Heitzer E, Stanzer S, Tabrizi-Wizsy NG, et al. Primary patient-derived lung adenocarcinoma cell culture challenges the association of cancer stem cells with epithelial-to-mesenchymal transition. Sci Rep. 2017 Aug 30;7(1):10040. https://doi.org/10.1038/s41598-017-09929-0
Supplementary files
Review
For citations:
Mezhevova I.V., Sitkovskaya A.O., Filippova S.Yu., Shamova T.V., Timofeeva S.V., Gnennaya N.V., Novikova I.A., Kharagezov D.A., Milakin A.G., Leiman I.A., Stateshny O.N., Rostorguev E.E., Atmachidi D.P., Lapteva T.O., Voloshin M.V., Eremin K.S., Suhar I.A. Practical experience of a lung cancer primary cell culture collection creation at the National Medical Research Centre for Oncology. South Russian Journal of Cancer. 2022;3(4):14-25. https://doi.org/10.37748/2686-9039-2022-3-4-2