Влияние COVID-19 различной степени тяжести на показатели семейства инсулиноподобных факторов роста в крови больных немелкоклеточным раком легкого
https://doi.org/10.37748/2686-9039-2023-4-2-1
Аннотация
Цель исследования. Изучить в сыворотке крови больных немелкоклеточным раком легкого (НМРЛ) содержание IGF и их белков- переносчиков в зависимости от степени тяжести перенесенного COVID-19.
Материалы и методы. В исследование включены 60 больных с гистологически подтвержденным НМРЛ стадии
T2–3NхM0, проходивших лечение в торакальном отделении ФГБУ «НМИЦ онкологии» Минздрава России с 2020 по 2021 гг. В контрольную группу вошли 30 больных раком легкого с бессимптомными или легкими случаями COVID-19 (15 мужчин и 15 женщин), в основную группу – 30 больных (15 мужчин и 15 женщин), перенесших болезнь в тяжелой или среднетяжелой форме. Средний возраст больных составил 59,11 ± 2,89 года. В качестве нормы использовали показатели в крови доноров того же возраста.
Результаты. В сыворотке крови больных НМРЛ основной и контрольной групп уровни IGF-I, IGF-II, IGFBP2 и IGFBP3 были выше значений доноров в среднем в 2,5, в 2,1, в 1,7 и в 2,7 раза соответственно (p < 0,05). Концентрация IGFBP1 была выше в контроле по сравнению с основной группой, а по отношению к донорам снижалась: в контрольной группе – у мужчин и женщин в 1,4 и 1,9 раза, а в основной – в 3,0 и 6,4 раза соответственно (p < 0,05). Коэффициенты соотношения повышались в обеих группах: IGF-I/IGFBP1 – в контрольной группе от 3,8 до 4,2 раза, а в основной от – 7,9 до 14,4 раза; IGF-II/IGFBP1 – в контрольной от 2,4 до 4,5 раза, а в основной группе – от 6,6 до 12,7 раза у мужчин и женщин соответственно (p < 0,05).
Заключение. У больных НМРЛ обоего пола в крови вне зависимости от тяжести перенесенного COVID-19, повышается уровень лигандов и почти всех исследованных белков-переносчиков, кроме IGFBP1. Соотношение IGF-I/IGFBP1 и IGF-II/IGFBP1 крови повышается в обеих группах, наиболее значимо в группе перенесших COVID-19 в тяжелой и среднетяжелой форме, что свидетельствует об избыточном накоплении уровня IGF в крови.
Об авторах
О. И. КитРоссия
Кит Олег Иванович – академик РАН, д.м.н., профессор, генеральный директор
AuthorID: 343182, ResearcherID: U-2241-2017, Scopus Author ID: 55994103100
г. Ростов-на-Дону
Е. М. Франциянц
Россия
Франциянц Елена Михайловна – д.б.н., профессор, заместитель генерального директора по научной работе
AuthorID: 462868, ResearcherID: Y-1491-2018, Scopus Author ID: 55890047700
г. Ростов-на-Дону
Д. А. Харагезов
Россия
Харагезов Дмитрий Акимович – к.м.н., онколог, хирург, заведующий отделением торакальной онкологии
AuthorID: 733789, ResearcherID: AAZ-3638-2021, Scopus Author ID: 56626499300
г. Ростов-на-Дону
В. А. Бандовкина
Россия
Бандовкина Валерия Ахтямовна – д.б.н., старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей
AuthorID: 696989
344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63
Н. Д. Черярина
Россия
Черярина Наталья Дмитриевна – врач-лаборант лаборатории изучения патогенеза злокачественных опухолей
AuthorID: 558243
г. Ростов-на-Дону
Ю. А. Погорелова
Россия
Погорелова Юлия Александровна – к.б.н., старший научный сотрудник лаборатории изучения патогенеза злокачественных опухолей
AuthorID: 558241
г. Ростов-на-Дону
Ю. Н. Лазутин
Россия
Лазутин Юрий Николаевич – к.м.н., доцент, ведущий научный сотрудник отдела торакальной хирургии
AuthorID: 364457
г. Ростов-на-Дону
А. Г. Милакин
Россия
Милакин Антон Григорьевич – онколог отделения торакальной хирургии
AuthorID: 794734
г. Ростов-на-Дону
И. А. Лейман
Россия
Лейман Игорь Александрович – к.м.н., врач-онколог отделения торакальной хирургии
AuthorID: 735699
г. Ростов-на-Дону
О. Н. Статешный
Россия
Статешный Олег Николаевич – онколог отделения торакальной хирургии
AuthorID: 1067071
г. Ростов-на-Дону
Список литературы
1. Каприн А. Д., Гамеева Е. В., Рощин Д. О., Костин А. А., Алексеева Г. С., Хороненко В. Э и др. Ремоделирование онкологической службы в условиях пандемии COVID-19 в федеральном научном центре 1-го уровня. Исследования и практика в медицине. 2020;7(2):10–21. https://doi.org/10.17709/2409-2231-2020-7-2-1, EDN: ENOWVJ
2. Кульченко Н. Г. Эпидемиология болезней почек у пациентов с COVID-19. Исследования и практика в медицине. 2020;7(3):74–82. https://doi.org/10.17709/2409-2231-2020-7-3-7, EDN: YWIALJ
3. Држевецкая К. С., Корженкова Г. П. Проведение скрининга рака молочной железы в условиях неблагоприятной эпидемиологической ситуации COVID-19. Исследования и практика в медицине. 2021;8(3):34–44. https://doi.org/10.17709/2410-1893-2021-8-3-3, EDN: COIEFA
4. Scully EP, Haverfield J, Ursin RL, Tannenbaum C, Klein SL. Considering how biological sex impacts immune responses and COVID-19 outcomes. Nat Rev Immunol. 2020 Jul;20(7):442–447. https://doi.org/10.1038/s41577-020-0348-8
5. Грицкевич А. А., Прохорова Я. Д., Байтман Т. П., Грицкевич Е. Ю., Костин А. А. Андрогены и тяжесть течения новой коронавирусной инфекции. Исследования и практика в медицине. 2022;9(2):143–155. https://doi.org/10.17709/2410-1893-2022-9-2-13, EDN: JTHNYV
6. Кульченко Н. Г., Дружинина Н. К., Мяндина Г. И. Мужское бесплодие в эпоху коронавирусной инфекции SARSCoV-2. Исследования и практика в медицине. 2022;9(4):123–133. https://doi.org/10.17709/2410-1893-2022-9-4-12, EDN: HIWZYH
7. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020 Apr 16;181(2):271–80.e8. https://doi.org/10.1016/j.cell.2020.02.052
8. Jazieh AR, Alenazi TH, Alhejazi A, Al Safi F, Al Olayan A. Outcome of Oncology Patients Infected With Coronavirus. JCO Glob Oncol. 2020 Mar;6:471–475. https://doi.org/10.1200/GO.20.00064
9. Liang W, Guan W, Chen R, Wang W, Li J, Xu K, et al. Cancer patients in SARS-CoV-2 infection: a nationwide analysis in China. Lancet Oncol. 2020 Mar;21(3):335–337. https://doi.org/10.1016/S1470-2045(20)30096-6
10. Miyashita H, Mikami T, Chopra N, Yamada T, Chernyavsky S, Rizk D, et al. Do patients with cancer have a poorer prognosis of COVID-19? An experience in New York City. Ann Oncol. 2020 Aug;31(8):1088–1089. https://doi.org/10.1016/j.annonc.2020.04.006
11. Yu J, Ouyang W, Chua MLK, Xie C. SARS-CoV-2 Transmission in Patients With Cancer at a Tertiary Care Hospital in Wuhan, China. JAMA Oncol. 2020 Jul 1;6(7):1108–1110. https://doi.org/10.1001/jamaoncol.2020.0980
12. Luo J, Rizvi H, Preeshagul IR, Egger JV, Hoyos D, Bandlamudi C, et al. COVID-19 in patients with lung cancer. Ann Oncol. 2020 Oct;31(10):1386–1396. https://doi.org/10.1016/j.annonc.2020.06.007
13. Rogado J, Pangua C, Serrano-Montero G, Obispo B, Marino AM, Pérez-Pérez M, et al. Covid-19 and lung cancer: A greater fatality rate? Lung Cancer. 2020 Aug;146:19–22. https://doi.org/10.1016/j.lungcan.2020.05.034
14. Генералов Е. А., Симоненко Е. Ю., Кульченко Н. Г., Яковенко Л. В. Молекулярные основы биологической активности полисахаридов при ассоциированных с COVID-19 состояниях. Биомедицинская химия. 2022;68(6):403–418. https://doi.org/10.18097/PBMC20226806403
15. Li G, Fan Y, Lai Y, Han T, Li Z, Zhou P, et al. Coronavirus infections and immune responses. J Med Virol. 2020 Apr;92(4):424– 432. https://doi.org/10.1002/jmv.25685
16. Qin C, Zhou L, Hu Z, Zhang S, Yang S, Tao Y, et al. Dysregulation of Immune Response in Patients With Coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020 Jul 28;71(15):762–768. https://doi.org/10.1093/cid/ciaa248
17. Sinha P, Matthay MA, Calfee CS. Is a “Cytokine Storm” Relevant to COVID-19? JAMA Intern Med. 2020 Sep 1;180(9):1152– 1154. https://doi.org/10.1001/jamainternmed.2020.3313
18. Chen B, Liu S, Xu W, Wang X, Zhao W, Wu J. IGF-I and IGFBP-3 and the risk of lung cancer: a meta-analysis based on nested case-control studies. J Exp Clin Cancer Res. 2009 Jun 24;28(1):89. https://doi.org/10.1186/1756-9966-28-89
19. Baxter RC. IGF binding proteins in cancer: mechanistic and clinical insights. Nat Rev Cancer. 2014 May;14(5):329–341. https://doi.org/10.1038/nrc3720
20. Tas F, Bilgin E, Tastekin D, Erturk K, Duranyildiz D. Serum IGF-1 and IGFBP-3 levels as clinical markers for patients with lung cancer. Biomed Rep. 2016 May;4(5):609–614. https://doi.org/10.3892/br.2016.629
21. Denduluri SK, Idowu O, Wang Z, Liao Z, Yan Z, Mohammed MK, et al. Insulin-like growth factor (IGF) signaling in tumorigenesis and the development of cancer drug resistance. Genes Dis. 2015 Mar 1;2(1):13–25. https://doi.org/10.1016/j.gendis.2014.10.004
22. Pohlman AW, Moudgalya H, Jordano L, Lobato GC, Gerard D, Liptay MJ, et al. The role of IGF-pathway biomarkers in determining risks, screening, and prognosis in lung cancer. Oncotarget. 2022;13:393–407. https://doi.org/10.18632/oncotarget.28202
23. Su C, Wang W, Wang C. IGF-1-induced MMP-11 expression promotes the proliferation and invasion of gastric cancer cells through the JAK1/STAT3 signaling pathway. Oncol Lett. 2018 May;15(5):7000–7006. https://doi.org/10.3892/ol.2018.8234
24. Livingstone C, Borai A. Insulin-like growth factor-II: its role in metabolic and endocrine disease. Clin Endocrinol (Oxf). 2014 Jun;80(6):773–781. https://doi.org/10.1111/cen.12446
25. Fidler MJ, Fhied CL, Roder J, Basu S, Sayidine S, Fughhi I, et al. The serum-based VeriStrat® test is associated with proinflammatory reactants and clinical outcome in non-small cell lung cancer patients. BMC Cancer. 2018 Mar 20;18(1):310. https://doi.org/10.1186/s12885-018-4193-0
26. Feizollahi P, Matin S, Roghani SA, Mostafaei S, Safarzadeh E, Taghadosi M. Evaluation serum levels of Insulin Growth Factor-1 (IGF-1) and its association with clinical parameters in severe COVID-19. Inflammopharmacology. 2022 Feb;30(1):199–205. https://doi.org/10.1007/s10787-021-00908-6
27. Osher E, Macaulay VM. Therapeutic Targeting of the IGF Axis. Cells. 2019 Aug 14;8(8):895. https://doi.org/10.3390/cells8080895
28. Bach LA. IGF-binding proteins. J Mol Endocrinol. 2018 Jul;61(1):T11–T28. https://doi.org/10.1530/JME-17-0254
29. Haywood NJ, Slater TA, Matthews CJ, Wheatcroft SB. The insulin like growth factor and binding protein family: Novel therapeutic targets in obesity & diabetes. Mol Metab. 2019 Jan;19:86–96. https://doi.org/10.1016/j.molmet.2018.10.008
30. Jerome L, Alami N, Belanger S, Page V, Yu Q, Paterson J, et al. Recombinant human insulin-like growth factor binding protein 3 inhibits growth of human epidermal growth factor receptor‑2‑overexpressing breast tumors and potentiates herceptin activity in vivo. Cancer Res. 2006 Jul 15;66(14):7245–7252. https://doi.org/10.1158/0008-5472.CAN-05-3555
31. Liu Q, Jiang J, Zhang X, Zhang M, Fu Y. Comprehensive Analysis of IGFBPs as Biomarkers in Gastric Cancer. Front Oncol. 2021;11:723131. https://doi.org/10.3389/fonc.2021.723131
32. Lukanova A, Toniolo P, Akhmedkhanov A, Biessy C, Haley NJ, Shore RE, et al. A prospective study of insulin-like growth factor-I, IGF-binding proteins-1, -2 and -3 and lung cancer risk in women. Int J Cancer. 2001 Jun 15;92(6):888–892. https://doi.org/10.1002/ijc.1265
33. Wang J, Hu ZG, Li D, Xu JX, Zeng ZG. Gene expression and prognosis of insulin like growth factor binding protein family members in non small cell lung cancer. Oncol Rep. 2019 Nov;42(5):1981–1995. https://doi.org/10.3892/or.2019.7314
34. Yeh HC, Maruthur NM, Wang NY, Jerome GJ, Dalcin AT, Tseng E, et al. Effects of Behavioral Weight Loss and Metformin on IGFs in Cancer Survivors: A Randomized Trial. J Clin Endocrinol Metab. 2021 Sep 27;106(10):e4179–e4191. https://doi.org/10.1210/clinem/dgab266
35. Ahasic AM, Tejera P, Wei Y, Su L, Mantzoros CS, Bajwa EK, et al. Predictors of Circulating Insulin-Like Growth Factor-1 and Insulin-Like Growth Factor-Binding Protein-3 in Critical Illness. Crit Care Med. 2015 Dec;43(12):2651–2659. https://doi.org/10.1097/CCM.0000000000001314
Дополнительные файлы
Рецензия
Для цитирования:
Кит О.И., Франциянц Е.М., Харагезов Д.А., Бандовкина В.А., Черярина Н.Д., Погорелова Ю.А., Лазутин Ю.Н., Милакин А.Г., Лейман И.А., Статешный О.Н. Влияние COVID-19 различной степени тяжести на показатели семейства инсулиноподобных факторов роста в крови больных немелкоклеточным раком легкого. Южно-Российский онкологический журнал/ South Russian Journal of Cancer. 2023;4(2):6-15. https://doi.org/10.37748/2686-9039-2023-4-2-1
For citation:
Kit O.I., Frantsiyants E.M., Kharagezov D.A., Bandovkina V.A., Cheryarina N.D., Pogorelova Yu.A., Lazutin Yu.N., Milakin A.G., Leyman I.A., Stateshny O.N. Varying severity COVID-19 effects on the blood indicators of insulin-like growth factors family in patients with nonsmall cell lung cancer. South Russian Journal of Cancer. 2023;4(2):6-15. https://doi.org/10.37748/2686-9039-2023-4-2-1