Preview

South Russian Journal of Cancer

Advanced search

Metabolomic profile of malignant ovarian tumors

https://doi.org/10.37748/2686-9039-2024-5-3-8

EDN: AVXOUI

Abstract

Purpose of the study. Investigate the metabolomic profile in tissues of patients with serous ovarian adenocarcinoma.

Materials and methods. The study included 100 patients with serous ovarian adenocarcinoma. Chromatographic separation of metabolites was performed on a Vanquish Flex UHPLC System chromatograph, which was coupled with an Orbitrap Exploris 480 mass spectrometer. Differences were assessed using the Mann-Whitney test with Bonferroni correction.

Results. In ovarian tumor tissue, 20 compounds had abnormal concentrations compared to normal tissue: increased levels of kynurenine, phenylalanylvaline, lysophosphatidylcholine (18:3), lysophosphatidylcholine (18:2), alanylleucine, L-phenylalanine, phosphatidylinositol (34:1), 5-methoxytryptophan, lysophosphatidylcholine (14:0), indoleacrylic acid and decreased levels of myristic acid, decanoylcarnitine, aspartylglycine, malonylcarnitine, 3-methylxanthine, 3-oxododecanoic acid, 2-hydroxymyristic acid, N-acetylproline, L-octanoylcarnitine and capryloylglycine.

Conclusion. A significant metabolic imbalance was found in ovarian tumor tissue, expressed in abnormal concentrations of fatty acids and their derivatives, acylcarnitines, amino acids and their derivatives, phospholipids and nitrogenous base derivatives. The concentrations of these 20 metabolites in tissues can serve as diagnostic markers of ovarian cancer. Thus, metabolomic tissue profiling allowed both to identify potential markers of the disease and to better understand the molecular mechanisms of changes underlying the development of this disease.

About the Authors

F. E. Filippov
Clinical Oncology Dispensary No. 1
Russian Federation

Fedor E. Filippov – oncologist of the Department of Oncogynecology, Clinical Oncology Dispensary No. 1, Krasnodar, Russian Federation


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



D. S. Kutilin
National Medical Research Centre for Oncology
Russian Federation

Denis S. Kutilin – Cand. Sci. (Biol.), Leading Researcher, Laboratory of Molecular Oncology, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-8942-3733, SPIN: 8382-4460, AuthorID: 794680, Scopus Author ID: 55328886800


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



A. Yu. Maksimov
National Medical Research Centre for Oncology
Russian Federation

Aleksey Yu. Maksimov – Dr. Sci. (Med.), Professor, Deputy Director General, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-9471-3903, SPIN: 7322-5589, AuthorID: 710705, Scopus Author ID: 56579049500


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



N. V. Porkhanova
Clinical Oncology Dispensary No. 1
Russian Federation

Natalya V. Porhanova – Dr. Sci. (Med.), Associate Professor of the Department of Oncology, oncologist, Clinical Oncology Dispensary No. 1, Russian Federation, Krasnodar, Russian Federation

SPIN: 2611-4840, AuthorID: 589928


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



References

1. Reid BM, Permuth JB, Sellers TA. Epidemiology of ovarian cancer: a review. Cancer Biol Med. 2017 Feb;14(1):9–32. https://doi.org/10.20892/j.issn.2095-3941.2016.0084

2. Злокачественные новообразования в России в 2018 году (заболеваемость и смертность). Под ред. А. Д. Каприна, В. В. Старинского, Г. В. Петровой. М.: МНИОИ им. П. А. Герцена – филиал ФГБУ «НМИЦ радиологии» Минздрава России, 2019, 250 с.

3. Цандекова М. Р., Порханова Н. В., Кутилин Д. С. Молекулярная характеристика серозной аденокарциномы яичника: значение для диагностики и лечения. Современные проблемы науки и образования. 2020;(1):55. https://doi.org/10.17513/spno.29428, EDN: LTMXTL

4. Meinhold-Heerlein I, Fotopoulou C, Harter P, Kurzeder C, Mustea A, Wimberger P, et al. The new WHO classification of ovarian, fallopian tube, and primary peritoneal cancer and its clinical implications. Arch Gynecol Obstet. 2016 Apr;293(4):695–700. https://doi.org/10.1007/s00404-016-4035-8

5. Rooth C. Ovarian cancer: risk factors, treatment and management. Br J Nurs. 2013 Sep 12;22(17):S23–30. https://doi.org/10.12968/bjon.2013.22.Sup17.S23

6. Ahmed-Salim Y, Galazis N, Bracewell-Milnes T, Phelps DL, Jones BP, Chan M, et al. The application of metabolomics in ovarian cancer management: a systematic review. Int J Gynecol Cancer. 2021 May;31(5):754–774. https://doi.org/10.1136/ijgc-2020-001862

7. Plewa S, Horała A, Dereziński P, Nowak-Markwitz E, Matysiak J, Kokot ZJ. Wide spectrum targeted metabolomics identifies potential ovarian cancer biomarkers. Life Sci. 2019 Apr 1;222:235–244. https://doi.org/10.1016/j.lfs.2019.03.004

8. Swiatly A, Plewa S, Matysiak J, Kokot ZJ. Mass spectrometry-based proteomics techniques and their application in ovarian cancer research. J Ovarian Res. 2018 Oct 1;11(1):88. https://doi.org/10.1186/s13048-018-0460-6

9. Veenstra TD. Metabolomics: the final frontier? Genome Med. 2012 Apr 30;4(4):40. https://doi.org/10.1186/gm339

10. Гуськова О. Н., Аллилуев И. А., Вереникина Е. В., Половодова В. В., Рогозин М. А., Мягкова Т. Ю. и др. Изменение концентрации метаболитов в моче как малоинвазивный маркер серозной аденокарциномы яичников. Российский биотерапевтический журнал. 2023;22(3):43–50. https://doi.org/10.17650/1726-9784-2023-22-3-43-50, EDN: KRLBXC

11. Гуськова О. Н., Аллилуев И. А., Вереникина Е. В., Меньшенина А. П., Черкасова А. А., Арджа А. Ю. и др. Особенности метаболома плазмы крови пациентов с серозной карциномой яичников. Современные проблемы науки и образования. 2023;(3):89. https://doi.org/10.17513/spno.32678, EDN: HJTHUD

12. Jones E., Oliphant E., Peterson P. SciPy: Open source scientific tools for python, 2001.

13. Koundouros N, Poulogiannis G. Reprogramming of fatty acid metabolism in cancer. Br J Cancer. 2020 Jan;122(1):4–22. https://doi.org/10.1038/s41416-019-0650-z

14. Zhao S, Cheng L, Shi Y, Li J, Yun Q, Yang H. MIEF2 reprograms lipid metabolism to drive progression of ovarian cancer through ROS/AKT/mTOR signaling pathway. Cell Death Dis. 2021 Jan 5;12(1):18. https://doi.org/10.1038/s41419-020-03336-6

15. Zazula R, Moravec M, Pehal F, Nejtek T, Protuš M, Müller M. Myristic Acid Serum Levels and Their Significance for Diagnosis of Systemic Inflammatory Response, Sepsis, and Bacteraemia. J Pers Med. 2021 Apr 16;11(4):306. https://doi.org/10.3390/jpm11040306

16. Matta M, Deubler E, Chajes V, Vozar B, Gunter MJ, Murphy N, et al. Circulating plasma phospholipid fatty acid levels and breast cancer risk in the Cancer Prevention Study-II Nutrition Cohort. Int J Cancer. 2022 Dec 15;151(12):2082–2094. https://doi.org/10.1002/ijc.34216

17. Aglago EK, Murphy N, Huybrechts I, Nicolas G, Casagrande C, Fedirko V, et al. Dietary intake and plasma phospholipid concentrations of saturated, monounsaturated and trans fatty acids and colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. Int J Cancer. 2021 Apr 28;149(4):865–882. https://doi.org/10.1002/ijc.33615

18. Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, et al. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016;4:11. https://doi.org/10.1186/s40170-016-0151-y

19. Sinha R, Ahn J, Sampson JN, Shi J, Yu G, Xiong X, et al. Fecal Microbiota, Fecal Metabolome, and Colorectal Cancer Interrelations. PLoS One. 2016;11(3):e0152126. https://doi.org/10.1371/journal.pone.0152126

20. Wang X, Wang J, Rao B, Deng L. Gut flora profiling and fecal metabolite composition of colorectal cancer patients and healthy individuals. Exp Ther Med. 2022 Apr;23(4):250. https://doi.org/10.3892/etm.2022.11175

21. Jenske R, Vetter W. Enantioselective analysis of 2- and 3-hydroxy fatty acids in food samples. J Agric Food Chem. 2008 Dec 24;56(24):11578–11583. https://doi.org/10.1021/jf802772a

22. Lemay AM, Courtemanche O, Couttas TA, Jamsari G, Gagné A, Bossé Y, et al. High FA2H and UGT8 transcript levels predict hydroxylated hexosylceramide accumulation in lung adenocarcinoma. J Lipid Res. 2019 Oct;60(10):1776–1786. https://doi.org/10.1194/jlr.M093955

23. Sun L, Yang X, Huang X, Yao Y, Wei X, Yang S, et al. 2-Hydroxylation of Fatty Acids Represses Colorectal Tumorigenesis and Metastasis via the YAP Transcriptional Axis. Cancer Res. 2021 Jan 15;81(2):289–302. https://doi.org/10.1158/0008-5472.CAN-20-1517

24. Batsika CS, Mantzourani C, Gkikas D, Kokotou MG, Mountanea OG, Kokotos CG, et al. Saturated Oxo Fatty Acids (SOFAs): A Previously Unrecognized Class of Endogenous Bioactive Lipids Exhibiting a Cell Growth Inhibitory Activity. J Med Chem. 2021 May 13;64(9):5654–5666. https://doi.org/10.1021/acs.jmedchem.0c02058

25. McCann MR, George De la Rosa MV, Rosania GR, Stringer KA. L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine. Metabolites. 2021 Jan 14;11(1):51. https://doi.org/10.3390/metabo11010051

26. Console L, Scalise M, Mazza T, Pochini L, Galluccio M, Giangregorio N, et al. Carnitine Traffic in Cells. Link With Cancer. Front Cell Dev Biol. 2020;8:583850. https://doi.org/10.3389/fcell.2020.583850

27. Warburg O, Wind F, Negelein E. The metabolism of tumors in the body. J Gen Physiol. 1927 Mar 7;8(6):519–530. https://doi.org/10.1085/jgp.8.6.519

28. Ganapathy V, Thangaraju M, Prasad PD. Nutrient transporters in cancer: relevance to Warburg hypothesis and beyond. Pharmacol Ther. 2009 Jan;121(1):29–40. https://doi.org/10.1016/j.pharmthera.2008.09.005

29. Zhang J, Wu G, Zhu H, Yang F, Yang S, Vuong AM, et al. Circulating Carnitine Levels and Breast Cancer: A Matched Retrospective Case-Control Study. Front Oncol. 2022;12:891619. https://doi.org/10.3389/fonc.2022.891619

30. Wang Y, Chen Y, Guan L, Zhang H, Huang Y, Johnson CH, et al. Carnitine palmitoyltransferase 1C regulates cancer cell senescence through mitochondria-associated metabolic reprograming. Cell Death Differ. 2018 Mar;25(4):735–748. https://doi.org/10.1038/s41418-017-0013-3

31. Ganti S, Taylor SL, Kim K, Hoppel CL, Guo L, Yang J, et al. Urinary acylcarnitines are altered in human kidney cancer. Int J Cancer. 2012 Jun 15;130(12):2791–2800. https://doi.org/10.1002/ijc.26274

32. Santer R, Fingerhut R, Lässker U, Wightman PJ, Fitzpatrick DR, Olgemöller B, et al. Tandem mass spectrometric determination of malonylcarnitine: diagnosis and neonatal screening of malonyl-CoA decarboxylase deficiency. Clin Chem. 2003 Apr;49(4):660–662. https://doi.org/10.1373/49.4.660

33. Huang Z, Lin L, Gao Y, Chen Y, Yan X, Xing J, et al. Bladder cancer determination via two urinary metabolites: a biomarker pattern approach. Mol Cell Proteomics. 2011 Oct;10(10):M111.007922. https://doi.org/10.1074/mcp.M111.007922

34. Chace DH, DiPerna JC, Adam BW, Hannon WH. Errors caused by the use of D,L-octanoylcarnitine for blood-spot calibrators. Clin Chem. 2001 Apr;47(4):758–3869.

35. Chang W, Fa H, Xiao D, Wang J. Targeting phosphatidylserine for Cancer therapy: prospects and challenges. Theranostics. 2020;10(20):9214–9229. https://doi.org/10.7150/thno.45125

36. Rolin J, Maghazachi AA. Effects of lysophospholipids on tumor microenvironment. Cancer Microenviron. 2011 Dec;4(3):393–403. https://doi.org/10.1007/s12307-011-0088-1

37. Li X, Nakayama K, Goto T, Kimura H, Akamatsu S, Hayashi Y, et al. High level of phosphatidylcholines/lysophosphatidylcholine ratio in urine is associated with prostate cancer. Cancer Sci. 2021 Oct;112(10):4292–4302. https://doi.org/10.1111/cas.15093

38. Min HK, Lim S, Chung BC, Moon MH. Shotgun lipidomics for candidate biomarkers of urinary phospholipids in prostate cancer. Anal Bioanal Chem. 2011 Jan;399(2):823–830. https://doi.org/10.1007/s00216-010-4290-7

39. Zeleznik OA, Clish CB, Kraft P, Avila-Pacheco J, Eliassen AH, Tworoger SS. Circulating Lysophosphatidylcholines, Phosphatidylcholines, Ceramides, and Sphingomyelins and Ovarian Cancer Risk: A 23-Year Prospective Study. J Natl Cancer Inst. 2020 Jun 1;112(6):628–636. https://doi.org/10.1093/jnci/djz195

40. Li X, Wang L, Fang P, Sun Y, Jiang X, Wang H, et al. Lysophospholipids induce innate immune transdifferentiation of endothelial cells, resulting in prolonged endothelial activation. J Biol Chem. 2018 Jul 13;293(28):11033–11045. https://doi.org/10.1074/jbc.RA118.002752

41. Kaynak A, Davis HW, Kogan AB, Lee JH, Narmoneva DA, Qi X. Phosphatidylserine: The Unique Dual-Role Biomarker for Cancer Imaging and Therapy. Cancers (Basel). 2022 May 21;14(10):2536. https://doi.org/10.3390/cancers14102536

42. Wood MN, Ishiyama N, Singaram I, Chung CM, Flozak AS, Yemelyanov A, et al. α-Catenin homodimers are recruited to phosphoinositide-activated membranes to promote adhesion. J Cell Biol. 2017 Nov 6;216(11):3767–3783. https://doi.org/10.1083/jcb.201612006

43. Ramos AR, Elong Edimo W, Erneux C. Phosphoinositide 5-phosphatase activities control cell motility in glioblastoma: Two phosphoinositides PI(4,5)P2 and PI(3,4)P2 are involved. Adv Biol Regul. 2018 Jan;67:40–48. https://doi.org/10.1016/j.jbior.2017.09.001

44. Sikalidis AK. Amino acids and immune response: a role for cysteine, glutamine, phenylalanine, tryptophan and arginine in T-cell function and cancer? Pathol Oncol Res. 2015 Jan;21(1):9–17. https://doi.org/10.1007/s12253-014-9860-0

45. Badawy AAB. Kynurenine Pathway of Tryptophan Metabolism: Regulatory and Functional Aspects. Int J Tryptophan Res. 2017;10:1178646917691938. https://doi.org/10.1177/1178646917691938

46. Wlodarska M, Luo C, Kolde R, d’Hennezel E, Annand JW, Heim CE, et al. Indoleacrylic Acid Produced by Commensal Peptostreptococcus Species Suppresses Inflammation. Cell Host Microbe. 2017 Jul 12;22(1):25–37. https://doi.org/10.1016/j.chom.2017.06.007

47. Tanaka M, Tóth F, Polyák H, Szabó Á, Mándi Y, Vécsei L. Immune Influencers in Action: Metabolites and Enzymes of the Tryptophan-Kynurenine Metabolic Pathway. Biomedicines. 2021 Jun 25;9(7):734. https://doi.org/10.3390/biomedicines9070734

48. Kanova M, Kohout P. Tryptophan: A Unique Role in the Critically Ill. Int J Mol Sci. 2021 Oct 28;22(21):11714. https://doi.org/10.3390/ijms222111714

49. Cheng HH, Kuo CC, Yan JL, Chen HL, Lin WC, Wang KH, et al. Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13231–13236. https://doi.org/10.1073/pnas.1209919109

50. Neurauter G, Grahmann AV, Klieber M, Zeimet A, Ledochowski M, Sperner-Unterweger B, et al. Serum phenylalanine concentrations in patients with ovarian carcinoma correlate with concentrations of immune activation markers and of isoprostane-8. Cancer Lett. 2008 Dec 8;272(1):141–147. https://doi.org/10.1016/j.canlet.2008.07.002

51. Ozawa H, Hirayama A, Shoji F, Maruyama M, Suzuki K, Yamanaka-Okumura H, et al. Comprehensive Dipeptide Analysis Revealed Cancer-Specific Profile in the Liver of Patients with Hepatocellular Carcinoma and Hepatitis. Metabolites. 2020 Nov 1;10(11):442. https://doi.org/10.3390/metabo10110442

52. Sass JO, Mohr V, Olbrich H, Engelke U, Horvath J, Fliegauf M, et al. Mutations in ACY1, the gene encoding aminoacylase 1, cause a novel inborn error of metabolism. Am J Hum Genet. 2006 Mar;78(3):401–409. https://doi.org/10.1086/500563

53. Lin Y, Ma C, Liu C, Wang Z, Yang J, Liu X, et al. NMR-based fecal metabolomics fingerprinting as predictors of earlier diagnosis in patients with colorectal cancer. Oncotarget. 2016 May 17;7(20):29454–29464. https://doi.org/10.18632/oncotarget.8762

54. Frankel AE, Coughlin LA, Kim J, Froehlich TW, Xie Y, Frenkel EP, et al. Metagenomic Shotgun Sequencing and Unbiased Metabolomic Profiling Identify Specific Human Gut Microbiota and Metabolites Associated with Immune Checkpoint Therapy Efficacy in Melanoma Patients. Neoplasia. 2017 Oct;19(10):848–855. https://doi.org/10.1016/j.neo.2017.08.004

55. Shojaei-Zarghani S, Yari Khosroushahi A, Rafraf M, Asghari-Jafarabadi M, Azami-Aghdash S. Dietary natural methylxanthines and colorectal cancer: a systematic review and meta-analysis. Food Funct. 2020 Dec 1;11(12):10290–10305. https://doi.org/10.1039/d0fo02518f

56. Liu H, Song J, Zhou Y, Cao L, Gong Y, Wei Y, et al. Methylxanthine derivatives promote autophagy in gastric cancer cells targeting PTEN. Anticancer Drugs. 2019 Apr;30(4):347–355. https://doi.org/10.1097/CAD.0000000000000724


Supplementary files

Review

For citations:


Filippov F.E., Kutilin D.S., Maksimov A.Yu., Porkhanova N.V. Metabolomic profile of malignant ovarian tumors. South Russian Journal of Cancer. 2024;5(3):91-101. https://doi.org/10.37748/2686-9039-2024-5-3-8. EDN: AVXOUI

Views: 350


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9039 (Online)