Preview

South Russian Journal of Cancer

Advanced search

Lymph nodes as a target for the use of dendritic cell vaccines: modern approaches and prospects

https://doi.org/10.37748/2686-9039-2025-6-3-7

EDN: oxfxgi

Abstract

This article provides an overview of current approaches to cancer immunotherapy, with an emphasis on the role of dendritic cells (DCs), lymph nodes (LNs), and innovative methods of vaccine delivery. Immunotherapy using DC-based vaccines represents a promising direction, capable of stimulating a specific immune response against tumor cells and forming long-term immune memory. Tumor-draining lymph nodes (TDLNs) play a key role in immune activation, as they are the sites where dendritic cells present tumor antigens and activate T-cells. In cancer, unlike viral infections, CD8+ T-cell activation occurs in two stages, and the effectiveness of this process depends on signals from the tumor microenvironment, which explains why the immune response to cancer is often weak.

The article also discusses modern strategies for delivering vaccines to lymph nodes, including the use of nanoparticles, bioorthogonal reactions, and photothermally induced materials. These approaches help overcome the "granularity paradox", associated with the need to balance vaccine size for LN penetration and uptake by immune cells. The prospects of adoptive cell therapy using T-cells from TDLNs, as well as the role of exosomes and whole-cell tumor antigens in the development of effective vaccines, are also considered. Combination strategies, such as the use of vaccines together with checkpoint inhibitors (e. g., anti-PD1), demonstrate potential for enhancing antitumor immunity.

The further advancement of cancer immunotherapy requires the integration of new knowledge about the biology of dendritic cells, modern methods of cell engineering, and nanotechnology to create personalized and effective antitumor vaccines.

About the Authors

E. M. Frantsiyants
National Medical Research Centre for Oncology
Russian Federation

Elena M. Frantsiyants – Dr. Sci. (Biol.), Professor, Deputy Director General for Scientific Work, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0003-3618-6890, SPIN: 9427-9928, AuthorID: 462868, ResearcherID: Y-1491-2018, Scopus Author ID: 55890047700


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



V. A. Bandovkina
National Medical Research Centre for Oncology
Russian Federation

Valeriya A. Bandovkina – Dr. Sci. (Biol.), senior researcher at the Laboratory for the Study of Pathogenesis of Malignant Tumors, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-2302-8271, SPIN: 8806-2641, AuthorID: 696989, ResearcherID: AAG-8708-2019, Scopus Author ID: 57194276288


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



T. I. Moiseenko
National Medical Research Centre for Oncology
Russian Federation

Tatiana I. Moiseenko – Dr. Sci. (Med.), Professor, chief researcher, Section of Reproductive Tumors, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0003-4037-7649, SPIN: 6341-0549, AuthorID: 705829


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



Yu. A. Petrova
National Medical Research Centre for Oncology
Russian Federation

Yuliya A. Petrova – Cand. Sci. (Biol.), senior researcher, Laboratory of Study of Malignant Tumor Pathogenesis, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-2674-9832, SPIN: 2168-8737, AuthorID: 558241, ResearcherID: AAE-4168-2022, Scopus Author ID: 37026863400


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



I. A. Goroshinskaya
National Medical Research Centre for Oncology
Russian Federation

Irina A. Goroshinskaya – Dr. Sci. (Biol.), Professor, senior researcher at Laboratory of Malignant Tumor Pathogenesis Study, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0001-6265-8500, SPIN: 9070-4855, Author ID: 79968, ResearcherID: Y-2277-2018, Scopus Author ID: 6602191458


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



G. V. Zhukova
National Medical Research Centre for Oncology
Russian Federation

Galina V. Zhukova – Dr. Sci. (Biol.), senior researcher at Laboratory of Malignant Tumor Pathogenesis Study, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0001-8832-8219, SPIN: 1887-7415, Author ID: 564827, ResearchID: Y-4243-2016, Scopus Author ID: 7005456284


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



L. K. Trepitaki
National Medical Research Centre for Oncology
Russian Federation

Lidiya K. Trepitaki – Cand. Sci. (Biol.), researcher at the Laboratory for the Study of Pathogenesis of Malignant Tumors, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-9749-2747, SPIN: 2052-1248, AuthorID: 734359, ResearcherID: AAG-9218-2019, Scopus Author ID: 55357624700


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



E. I. Surikova
National Medical Research Centre for Oncology
Russian Federation

Ekaterina I. Surikova – Cand. Sci. (Biol.), senior researcher at the Laboratory for the Study of Pathogenesis of Malignant Tumors, National Medical Research Centre for Oncology, Rostov-on-Don, Russian Federation

ORCID: https://orcid.org/0000-0002-4318-7587, SPIN: 2401-4115, AuthorID: 301537, ResearcherID: AAG-8748-2019, Scopus Author ID: 6507092816


Competing Interests:

the authors declare that there are no obvious and potential conflicts of interest associated with the publication of this article



References

1. Yan S, Luo Z, Li Z, Wang Y, Tao J, Gong C, Liu X. Improving Cancer Immunotherapy outcomes using biomaterials. Angew Chem Int Ed Engl. 2020;59:17332–17343.doi: 10.1002/anie.202002780.

2. Liu J, Liew SS, Wang J, Pu K. Bioinspired and Biomimetic Delivery platforms for Cancer vaccines. Adv Mater 2022 Jan;34(1):e2103790. doi: 10.1002/adma.202103790.

3. Kurilin V, Alshevskaya A, Sennikov S. Development of Cell Technologies Based on Dendritic Cells for Immunotherapy of Oncological Diseases. Biomedicines. 2024 Mar 21;12(3):699. doi: 10.3390/biomedicines12030699.

4. Cabeza-Cabrerizo M, Cardoso A, Minuti SM, Pereira da Costa M, Reis i Souza C. Dendritic cells: a look into the past. Annual review of immunology. 2021 Apr 26;39:131–166. doi: 10.1146/annurev-immunol-061020-053707.

5. Tiwari A, Alcover K, Carpenter E, Thomas K, Krum J, Nissen A, et al. Utility of cell-based vaccines as cancer therapy: Systematic review and meta-analysis. Hum Vaccin Immunother. 2024 Dec 31;20(1):2323256. doi: 10.1080/21645515.2024.2323256.

6. Zha Y, Fu L, Liu Z, Lin J, Huang L. Construction of lymph nodes-targeting tumor vaccines by using the principle of DNA base complementary pairing to enhance anti-tumor cellular immune response. J Nanobiotechnology. 2024 May 8;22(1):230. doi: 10.1186/s12951-024-02498-1.

7. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol. 2020;20:7–24. doi: 10.1038/s41577-019-0210-z.

8. Jia X, Chen H, Wu M, Wang L, Li T, Ma J, et al. A biodegradable Antigen Nanocapsule promotes Anti-tumor Immunity via the cGAS‐STING pathway. Adv Funct Mater. 2023 Jan12;33. doi: 10.1002/adfm.202212085.

9. Chu Y, Qian L, Ke Y, Feng X, Chen X, Liu F, et al. Lymph node-targeted neoantigen nanovaccines potentiate anti-tumor immune responses of post-surgical melanoma. J Nanobiotechnol. 2022;20:190. doi: 10.1186/s12951-022-01397-7.

10. Jin L, Yang D, Song Y, Li D, Xu W, Zhu Y, et al. In situ programming of Nanovaccines for Lymph Node-targeted delivery and Cancer immunotherapy. ACS Nano. 2022 Sep 27;16(9):15226-15236. doi: 10.1021/acsnano.2c06560.

11. Wang Y, Zhao Q, Zhao B, Zheng Y, Zhuang Q, Liao N, et al. Remodeling Tumor-Associated neutrophils to enhance dendritic cell-based HCC Neoantigen Nano-Vaccine Efficiency. Adv Sci (Weinh). 2022 Apr;9(11):e2105631. doi: 10.1002/advs.202105631.

12. Zhang H, Zhang Y, Hu H, Yang W, Xia X, Lei L, et al. In situ tumor vaccine for Lymph Nodes Delivery and Cancer Therapy based on small size Nanoadjuvant. Small. 2023 Aug;19(33):e2301041. doi: 10.1002/smll.202301041.

13. du Bois H, Heim TA, Lund AW. Tumor-draining lymph nodes: at the crossroads of metastasis and immunity. Sci Immunol. 2021 Sep 10;6(63):eabg3551. doi: 10.1126/sciimmunol.abg3551.

14. Prokhnevska N, Cardenas MA, Valanparambil RM, Sobierajska E, Barwick BG, Jansen C, et al. CD8+ T cell activation in cancer comprises an initial activation phase in lymph nodes followed by effector differentiation within the tumor. Immunity. 2023 Jan 10;56(1):107-124.e5. doi: 10.1016/j.immuni.2022.12.002.

15. Barber A. Costimulation of Effector CD8+ T Cells: Which Receptor is Optimal for Immunotherapy? MOJ Immunol 2014;1(2):00011. doi: 10.15406/moji.2014.01.00011.

16. Kamphorst AO, Pillai RN, Yang S, Nasti TH, Akondy RS, Wieland A, et al. Proliferation of PD-1+ CD8 T cells in peripheral blood after PD-1-targeted therapy in lung cancer patients. Proc. Natl. Acad. Sci. USA. 2017;114:4993–4998. doi:10.1073/pnas.1705327114.

17. Sade-Feldman M, Yizhak K, Bjorgaard SL, Ray JP, de Boer CG, Jenkins RW, et al. Defining T cell states associated with response to checkpoint immunotherapy in melanoma. Cell. 2018;175:998–1013.e20. doi: 10.1016/j.cell.2018.10.038.

18. Miller BC, Sen DR, Al Abosy R, Bi K, Virkud YV, LaFleur MW, et al. Subsets of exhausted CD8+ T cells differentially mediate tumor control and respond to checkpoint blockade. Nat. Immunol. 2019;20:326–336. doi:10.1038/s41590-019-0312-6.

19. Jansen CS, Prokhnevska N, Master VA, Sanda MG, Carlisle JW, Bilen MA, et al. An intra-tumoral niche maintains and differentiates stem-like CD8 T cells. Nature. 2019;576:465–470. doi: 10.1038/s41586-019-1836-5.

20. Blessin NC, Spriestersbach P, Li W, Mandelkow T, Dum D, Simon R, et al. Prevalence of CD8(+) cytotoxic lymphocytes in human neoplasms. Cell. Oncol. (Dordr).2020;43:421–430. doi: 10.1007/s13402-020-00496-7.

21. Dammeijer F, van Gulijk M, Mulder EE, Lukkes M, Klaase L, van den Bosch T, et al. The PD-1/PD-L1-checkpoint restrains T cell immunity in tumor-draining lymph nodes. Cancer Cell. 2020;38:685–700.e688. doi: 10.1016/j.ccell.2020.09.001.

22. Connolly KA, Kuchroo M, Venkat A, Khatun A, Wang J, William I, et al. A reservoir of stem-like CD8(+) T cells in the tumor-draining lymph node preserves the ongoing antitumor immune response. Sci Immunol. 2021;6:eabg7836. doi: 10.1126/sciimmunol.abg7836.

23. Du Y, Song T, Wu J, Gao XD, Ma G, Liu Y, Xia Y. Engineering mannosylated pickering emulsions for the targeted delivery of multicomponent vaccines. Biomaterials. 2022;280:121313. doi: 10.1016/j.biomaterials.2021.121313.

24. Wang J, Wang Y, Qiao S, Mamuti M, An H, Wang H. In situ phase transitional polymeric vaccines for improved immunotherapy. Natl Sci Rev. 2021 Aug 27;9(2):nwab159. doi: 10.1093/nsr/nwab159.

25. Qin H, Zhao R, Qin Y, Zhu J, Chen L, Di C, et al. Development of a Cancer Vaccine using in vivo click-Chemistry-mediated active Lymph Node Accumulation for Improved Immunotherapy. Adv Mater. 2021 May;33(20):e2006007. doi: 10.1002/adma.202006007.

26. Scheetz L, Park KS, Li Q, Lowenstein PR, Castro MG, Schwendeman A, Moon JJ. Engineering patient-specific cancer immunotherapies. Nat Biomed Eng. 2019;3:768–782. doi: 10.1038/s41551-019-0436-x.

27. Kuai R, Ochyl LJ, Bahjat KS, Schwendeman A, Moon JJ. Designer vaccine nanodiscs for personalized cancer immunotherapy. Nat Mater. 2017 Apr;16(4):489-496. doi: 10.1038/nmat4822.

28. Sahin U, Türeci Ö. Personalized vaccines for cancer immunotherapy. Science. 2018 Mar 23;359(6382):1355-1360. doi: 10.1126/science.aar7112.

29. Keskin DB, Anandappa AJ, Sun J, Tirosh I, Mathewson ND, Li S, et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature. 2019 Jan;565(7738):234-239. doi: 10.1038/s41586-018-0792-9.

30. Wang H, Mooney DJ. Targeted modulation of immune cells by biomaterials for cancer treatment. Nat Mater. 2018 Sep;17(9):761-772. doi: 10.1038/s41563-018-0147-9.

31. Yu X, Dai Y, Zhao Y, Qi S, Liu L, Lu L, Luo Q, Zhang Z. Melittin-lipid nanoparticles target to lymph nodes and elicit a systemic anti-tumor immune response. Nat Commun. 2020 Feb 28;11(1):1110. doi: 10.1038/s41467-020-14906-9.

32. Jin M, Frankel WL. Lymph node metastasis in colorectal cancer. Surg Oncol Clin N Am. 2018;27:401–412. doi: 10.1016/j.soc.2017.11.011.

33. Inamori K, Togashi Y, Fukuoka S, Akagi K, Ogasawara K, Irie T, et al. Importance of lymph node immune responses in MSI-H/dMMR colorectal cancer. JCI Insight. 2021 May 10;6(9):e137365. doi: 10.1172/jci.insight.137365.

34. Koukourakis MI, Giatromanolaki A. Tumor draining lymph nodes, immune response, and radiotherapy: towards a revisal of therapeutic principles. Biochim Biophys Acta Rev Cancer. 2022;1877:188704. doi: 10.1016/j.bbcan.2022.188704.

35. Okamura K, Nagayama S, Tate T, Chan HT, Kiyotani K, Nakamura Y. Lymphocytes in tumor-draining lymph nodes co-cultured with autologous tumor cells for adoptive cell therapy. J Transl Med. 2022 May 23;20(1):241. doi: 10.1186/s12967-022-03444-1.

36. Li Q, Zeng H, Liu T, Wang P, Zhang R, Zhao B, et al. A dendritic cell-based vaccine for vaccinating and priming neoantigen-responsive T cells for cancer immunotherapy in mice. Nat Commun. 2024 Nov 29;15(1):10419. doi: 10.1038/s41467-024-54650-y.

37. Liu M, Feng Y, Lu Y, Huang R, Zhang Y, Zhao Y, Mo R. High-density lipoprotein-mimicking lymphocyte-targeting nanovaccine for personalized multi-antigen cancer immunotherapy. Sci Adv. 2024 Mar 15;10(11):eadk2444. doi: 10.1126/sciadv.adk2444.

38. Zhou L, Zhao L, Wang M, Qi X, Zhang X, Song Q, et al. Dendritic Cell-Hitchhiking In Vivo for Vaccine Delivery to Lymph Nodes. Adv Sci (Weinh). 2024 Sep;11(33):e2402199. doi: 10.1002/advs.202402199.

39. Dong H, Su H, Chen L, Liu Q, Hu HM, Yang W, Mou Y. Immunocompetence and mechanism of action of DRibble-DCs vaccine in oral squamous cell carcinoma. Cancer Manag Res. 2018 Mar 16;10:493-501. doi: 10.2147/CMAR.S155914.

40. Zhang M, Hong JA, Kunst TF, Bond CD, Kenney CM, Warga CL, et al. Randomized phase II trial of a first-in-human cancer cell lysate vaccine in patients with thoracic malignancies. Transl Lung Cancer Res. 2021 Jul;10(7):3079-3092. doi: 10.21037/tlcr-21-1.

41. Tanyi JL, Bobiss S, Ophir E, Thuyaerts S, Roberti A, Genole R, A personalized cancer vaccine effectively mobilizes antitumor T cell immunity in ovarian cancer. Sci Transl Med. 2018 Apr 11;10(436):eaao5931. doi: 10.1126/scitranslmed.aao5931.

42. Hosseini R, Sarvnaz H, Arabpour M, Ramshe SM, Asef-Kabiri L, Yousefi H, et al. Cancer exosomes and natural killer cells dysfunction: biological roles, clinical significance and implications for immunotherapy. Mol Cancer. 2022 Jan 14;21(1):15. doi: 10.1186/s12943-021-01492-7.

43. Rao Q, Zuo B, Lu Z, Gao X, You A, Wu C, et al. Tumor-derived exosomes elicit tumor suppression in murine hepatocellular carcinoma models and humans in vitro. Hepatology. 2016 Aug;64(2):456-472. doi: 10.1002/hep.28549.

44. Xu J, Liu H, Wang T, Wen Q, Chen H, Yang Q, et al. A CCR7-mediated mimetic dendritic cell vaccine for the treatment of head and neck squamous cell carcinoma. Adv Sci (Vine). 2023 Jun;10(17):e2207017. doi: 10.1002/advs.202207017.

45. Goswami S, Anandhan S, Raychaudhuri D, Sharma P. Myeloid cell-targeted therapy for solid tumors. Nat Rev Immunol. 2023 Feb;23(2):106-120. doi: 10.1038/s41577-022-00737-w.

46. Perez CR, De Palma M. Engineering dendritic cell vaccines to improve cancer immunotherapy. Nat Commun. 2019 Nov 27;10(1):5408. doi: 10.1038/s41467-019-13368-y.

47. Kvedaraite E, Ginkhuks F. Human dendritic cells in cancer. Sci Immunol. 2022 Apr;7(70):eabm9409. doi: 10.1126/sciimmunol.abm9409.

48. Sprooten J, Vanmeerbeek I, Datsi A, Govaerts J, Naulaerts S, Laureano RS, et al. Lymph node and tumor-associated PD-L1+ macrophages antagonize dendritic cell vaccines by suppressing CD8+ T cells. Cell Rep Med. 2024 Jan 16;5(1):101377. doi: 10.1016/j.xcrm.2023.101377.

49. Wang R, Zhu T, Hou B, Huang X. An iPSC-derived exosome-pulsed dendritic cell vaccine boosts antitumor immunity in melanoma. Mol Ther. 2023 Aug 2;31(8):2376-2390. doi: 10.1016/j.ymthe.2023.06.005.

50. Ghasemi A, Martinez-Usatorre A, Li L, Hicham M, Guichard A, Marcone R, et al. Cytokine-armed dendritic cell progenitors for antigen-agnostic cancer immunotherapy. Nat Cancer. 2024 Feb;5(2):240-261. doi: 10.1038/s43018-023-00668-y.


Supplementary files

Review

For citations:


Frantsiyants E.M., Bandovkina V.A., Moiseenko T.I., Petrova Yu.A., Goroshinskaya I.A., Zhukova G.V., Trepitaki L.K., Surikova E.I. Lymph nodes as a target for the use of dendritic cell vaccines: modern approaches and prospects. South Russian Journal of Cancer. 2025;6(3):63-76. https://doi.org/10.37748/2686-9039-2025-6-3-7. EDN: oxfxgi

Views: 19


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2686-9039 (Online)