АДОПТИВНАЯ КЛЕТОЧНАЯ ТЕРАПИЯ: ДОСТИЖЕНИЯ ПОСЛЕДНИХ ЛЕТ
https://doi.org/10.37748/2687-0533-2020-1-1-4
Аннотация
Иммунная система играет важную роль в развитии и лечении многих типов рака. На основе этого факта было разработано множество иммунотерапевтичских подходов, одним из которых является адоптивная клеточная терапия (АКТ). В представленной статье освещается суть основных методов адоптивной клеточной терапии рака, возможность их применения на данном этапе и перспективы развития. В начале статьи излагается актуальность проблемы развития иммунотерапии онкозаболеваний и ее современное состояние. Основная часть включает в себя изложение механизмов адоптивного переноса Т-клеток (немодифицированных и модифицированных генетически), создания дендритно-клеточных вакцин и цитокин-индуцированных киллеров (ЦИК), а также обзор современных исследований по внедрению перечисленных методов в клинику. Результатом данного обзора является вывод, что АКТ является одним из перспективных и интенсивно изучаемых в настоящее время методов иммунотерапии рака, а также требует оптимизации для более эффективного применения в лечении онкозаболеваний.
Об авторах
Т. В. ШамоваРоссия
Шамова Татьяна Владимировна — младший научный сотрудник лаборатории клеточных технологий
344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63
SPIN: 5426-1873
А. О. Ситковская
Россия
Ситковская Анастасия Олеговна — заведующая лабораторией клеточных технологий
344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63
SPIN: 1659-6976
ResearcherID: E-7496-2018
Scopus Author ID: 56381527400
Л. Н. Ващенко
Россия
Ващенко Лариса Николаевна — доктор медицинских наук, профессор, заведующая отделением опухолей костей, кожи, мягких тканей и молочной железы
344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63
SPIN: 5573-4396
Э. Э. Кечеджиева
Россия
Кечеджиева Эмма Эдуардовна — кандидат медицинских наук, врач-хирург отделения опухолей костей, кожи, мягких тканей и молочной железы
344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63
SPIN: 6266-4847
Список литературы
1. Chen D. S., Mellman I. Oncology Meets Immunology: The Cancer-Immunity Cycle. Immunity. 2013 Jul 25;39(1):1–10. http://doi.org/10.1016/j.immuni.2013.07.012
2. Luke J. J., Flaherty K. T., Ribas A., Long G. V. Targeted agents and immunotherapies: optimizing outcomes in melanoma. Nat Rev Clin Oncol. 2017 Aug;14(8):463–482. http://doi.org/10.1038/nrclinonc.2017.43
3. Mayor M., Yang N., Sterman D., Jones D. R., Adusumilli P. S. Immunotherapy for non-small cell lung cancer: current concepts and clinical trials. Eur J Cardiothorac Surg. 2016 May 1;49(5):1324–1333. http://doi.org/10.1093/ejcts/ezv371
4. Златник Е. Ю., Ситковская А. О., Непомнящая Е. М., Джандигова Ф. Р., Ващенко Л. Н. Достижения и перспективы клеточных технологий на основе активированных лимфоцитов в лечении злокачественных опухолей. Казанский медицинский журнал. 2018;99(5):792–801. http://doi.org/10.17816/KMJ2018–792
5. June C. H., Riddell S. R., Schumacher T. N. Adoptive cellular therapy: A race to the finish line. Sci Transl Med. 2015 Mar 25;7(280):280ps7. http://doi.org/10.1126/scitranslmed.aaa3643
6. Morvan M. G., Lanier L. L. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer. 2016 Jan;16(1):7–19. http://doi.org/10.1038/nrc.2015.5
7. Houot R., Schultz L. M., Marabelle A., Kohrt H. T-cell-based Im-munotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol Res. 2015 Oct;3(10):1115–1122. http://doi.org/10.1158/2326–6066.CIR-15–0190
8. Rosenberg S. A., Yang J. C., Sherry R. M., Kammula U. S., Hughes M. S., Phan G. Q., et al. Durable Complete Responses in Heavily Pretreated Patients with Metastatic Melanoma Using T-Cell Transfer Immunotherapy. Clin Cancer Res. 2011 Jul 1;17(13):4550–4557. http://doi.org/10.1158/1078–0432.CCR-11–0116
9. Rosenberg S. A., Packard B. S., Aebersold P. M., Solomon D., Topalian S. L., Toy S. T., et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988 Dec 22;319(25):1676–1680. http://doi.org/10.1056/NEJM198812223192527
10. Nguyen L. T., Saibil S. D., Sotov V., Le M. X., Khoja L., Ghazarian D., et al. Phase II clinical trial of adoptive cell therapy for patients with metastatic melanoma with autologous tumor-infiltrating lymphocytes and low-dose interleukin-2. Cancer Immunol Immunother. 2019 May 1;68(5):773–785. http://doi.org/10.1007/s00262–019–02307-x
11. Stevanovic S., Draper L. M., Langhan M. M., Campbell T. E., Kwong M. L., Wunderlich J. R., et al. Complete regression of metastatic cervical cancer after treatment with human papillomavirus-targeted tumor-infiltrating T cells. J Clin Oncol. 2015 May 10;33(14):1543–1550. http://doi.org/10.1200/JCO.2014.58.9093
12. Tran E., Turcotte S., Gros A., Robbins P. F., Lu Y.-C., Dudley M. E., et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014 May 9;344(6184):641–645. http://doi.org/10.1126/science.1251102
13. Tran E., Robbins P. F., Lu Y.-C., Prickett T. D., Gartner J. J., Jia L., et al. T-Cell Transfer Therapy Targeting Mutant KRAS in Cancer. N Engl J Med. 2016 Dec 8;375(23):2255–2262. http://doi.org/10.1056/NEJMoa1609279
14. Turcotte S., Gros A., Tran E., Lee C.-C. R., Wunderlich J. R., Robbins P. F., et al. Tumor-reactive CD8+ T cells in metastatic gastrointestinal cancer refractory to chemotherapy. Clin Cancer Res. 2014 Jan 15;20(2):331–343. http://doi.org/10.1158/1078–0432.CCR-13–1736
15. Lee H. J., Kim Y.-A., Sim C. K., Heo S.-H., Song I. H., Park H. S., et al. Expansion of tumor-infiltrating lymphocytes and their potential for application as adoptive cell transfer therapy in human breast cancer. Oncotarget. 2017 Dec 26;8(69):113345–113359. http://doi.org/10.18632/oncotarget.23007
16. Houot R., Schultz L. M., Marabelle A., Kohrt H. T-cell-based Immunotherapy: Adoptive Cell Transfer and Checkpoint Inhibition. Cancer Immunol Res. 2015 Oct;3(10):1115–1122. http://doi.org/10.1158/2326–6066.CIR-15–0190
17. Morgan R. A., Dudley M. E., Wunderlich J. R., Hughes M. S., Yang J. C., Sherry R. M., et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006 Oct 6;314(5796):126–129. http://doi.org/10.1126/science.1129003
18. Johnson L. A., Morgan R. A., Dudley M. E., Cassard L., Yang J. C., Hughes M. S., et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009 Jul 16;114(3):535–546. http://doi.org/10.1182/blood-2009–03–211714
19. Parkhurst M. R., Yang J. C., Langan R. C., Dudley M. E., Nathan D.-A. N., Feldman S. A., et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011 Mar;19(3):620–626. http://doi.org/10.1038/mt.2010.272
20. Robbins P. F., Morgan R. A., Feldman S. A., Yang J. C., Sherry R. M., Dudley M. E., et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NYESO-1. J Clin Oncol. 2011 Mar 1;29(7):917–924. http://doi.org/10.1200/jco.2010.32.2537
21. Morgan R. A., Chinnasamy N., Abate-Daga D., Gros A., Robbins P. F., Zheng Z., et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013 Feb;36(2):133–351. http://doi.org/10.1097/CJI.0b013e3182829903
22. Parkhurst M. R., Yang J. C., Langan R. C., Dudley M. E., Nathan D.-A. N., Feldman S. A., et al. T cells targeting carcinoembryonic antigen can mediate regression of metastatic colorectal cancer but induce severe transient colitis. Mol Ther. 2011 Mar;19(3):620–626. http://doi.org/10.1038/mt.2010.272
23. Linette G. P., Stadtmauer E. A., Maus M. V., Rapoport A. P., Levine B. L., Emery L., et al. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013 Aug 8;122(6):863–871. http://doi.org/10.1182/blood-2013–03–490565
24. Kochenderfer J. N., Dudley M. E., Kassim S. H., Somerville R. P. T., Carpenter R. O., Stetler-Stevenson M., et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015 Feb 20;33(6):540–549. http://doi.org/10.1200/JCO.2014.56.2025
25. Porter D. L., Frey N. V., Melenhorst J. J., Hwang W.-T., Lacey S. F., Shaw P. A., et al. Randomized, phase II dose optimization study of chimeric antigen receptor (CAR) modified T cells directed against CD19 in patients (pts) with relapsed, refractory (R/R) CLL. JCO. 2016 May 20;34(15_suppl):3009–3009. http://doi.org/10.1200/JCO.2016.34.15_suppl.3009
26. Maude S. L., Frey N., Shaw P. A., Aplenc R., Barrett D. M., Bunin N.J/, et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014 Oct 16;371(16):1507– 1517. http://doi.org/10.1056/NEJMoa1407222
27. Louis C. U., Savoldo B., Dotti G., Pule M., Yvon E., Myers G. D., et al. Antitumor activity and long-term fate of chimeric antigen receptor-positive T cells in patients with neuroblastoma. Blood. 2011 Dec 1;118(23):6050–6056. http://doi.org/10.1182/blood-2011–05–354449
28. Pule M. A., Savoldo B., Myers G. D., Rossig C., Russell H. V., Dotti G., et al. Virus-specific T cells engineered to coexpress tumor-specific receptors: persistence and antitumor activity in individuals with neuroblastoma. Nat Med. 2008 Nov;14(11):1264–1270. http://doi.org/10.1038/nm.1882
29. Morgan R. A., Yang J. C., Kitano M., Dudley M. E., Laurencot C. M., Rosenberg S. A. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010 Apr;18(4):843–851. http://doi.org/10.1038/mt.2010.24
30. Kershaw M. H., Westwood J. A., Parker L. L., Wang G., Eshhar Z., Mavroukakis S. A., et al. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006 Oct 15;12(20 Pt 1):6106–6115. http://doi.org/10.1158/1078–0432.CCR-06–1183
31. Lamers C. H., Sleijfer S., van Steenbergen S., van Elzakker P., van Krimpen B., Groot C., et al. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013 Apr;21(4):904–912. http://doi.org/10.1038/mt.2013.17
32. Di Stasi A., Tey S.-K., Dotti G., Fujita Y., Kennedy-Nasser A., Martinez C., et al. Inducible apoptosis as a safety switch for adoptive cell therapy. N Engl J Med. 2011 Nov 3;365(18):1673– 1683. http://doi.org/10.1056/NEJMoa1106152
33. Restifo N. P., Dudley M. E., Rosenberg S. A. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012 Mar 22;12(4):269–281. http://doi.org/10.1038/nri3191
34. Wang Z.-X., Cao J.-X., Wang M., Li D., Cui Y.-X., Zhang X.-Y., et al. Adoptive cellular immunotherapy for the treatment of patients with breast cancer: a meta-analysis. Cytotherapy. 2014 Jul;16(7):934–945. http://doi.org/10.1016/j.jcyt.2014.02.011
35. Palucka K., Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012 Mar 22;12(4):265–277. http://doi.org/10.1038/nrc3258
36. Draube A., Klein-González N., Mattheus S., Brillant C., Hellmich M., Engert A., et al. Dendritic cell based tumor vaccination in prostate and renal cell cancer: a systematic review and meta-analysis. PLoS ONE. 2011 Apr 20;6(4): e18801. http://doi.org/10.1371/journal.pone.0018801
37. Widén K., Mozaffari F., Choudhury A., Mellstedt H. Overcoming immunosuppressive mechanisms. Ann Oncol. 2008 Sep;19 Suppl 7: vii241–247. http://doi.org/10.1093/annonc/mdn459
38. Boudreau J. E., Bridle B. W., Stephenson K. B., Jenkins K. M., Brunellière J., Bramson J. L., et al. Recombinant vesicular stomatitis virus transduction of dendritic cells enhances their ability to prime innate and adaptive antitumor immunity. Mol Ther. 2009 Aug;17(8):1465–1472. http://doi.org/10.1038/mt.2009.95
39. Amos S. M., Duong C. P. M., Westwood J. A., Ritchie D. S., Junghans R. P., Darcy P. K., et al. Autoimmunity associated with immunotherapy of cancer. Blood. 2011 Jul 21;118(3):499– 509. http://doi.org/10.1182/blood-2011–01–325266
40. Leonhartsberger N., Ramoner R., Falkensammer C., Rahm A., Gander H., Höltl L., et al. Quality of life during dendritic cell vaccination against metastatic renal cell carcinoma. Cancer Immunol Immunother. 2012 Sep;61(9):1407–1413. http://doi.org/10.1007/s00262–012–1207–7
41. Anguille S., Smits E. L., Lion E., van Tendeloo V. F., Berneman Z. N. Clinical use of dendritic cells for cancer therapy. Lancet Oncol. 2014 Jun;15(7): e257–267. http://doi.org/10.1016/S1470–2045(13)70585–0
42. Yron I., Wood T. A., Spiess P. J., Rosenberg S. A. In vitro growth of murine T cells. V. The isolation and growth of lymphoid cells infiltrating syngeneic solid tumors. J Immunol. 1980 Jul;125(1):238–245.
43. Lotze M. T., Line B. R., Mathisen D. J., Rosenberg S. A. The in vivo distribution of autologous human and murine lymphoid cells grown in T cell growth factor(TCGF): implications for the adoptive immunotherapy of tumors. J Immunol. 1980 Oct;125(4):1487–1493.
44. Mulé J. J., Shu S., Schwarz S. L., Rosenberg S. A. Adoptive immunotherapy of established pulmonary metastases with LAK cells and recombinant interleukin-2. Science. 1984 Sep 28;225(4669):1487–1489. http://doi.org/10.1126/science.6332379
45. Parkhurst M. R., Riley J. P., Dudley M. E., Rosenberg S. A. Adoptive transfer of autologous natural killer cells leads to high levels of circulating natural killer cells but does not mediate tumor regression. Clin Cancer Res. 2011 Oct 1;17(19):6287–6297. http://doi.org/10.1158/1078–0432.CCR-11–1347
46. Lotze M. T., Grimm E. A., Mazumder A., Strausser J. L., Rosenberg S. A. Lysis of fresh and cultured autologous tumor by human lymphocytes cultured in T-cell growth factor. Cancer Res. 1981 Nov;41(11 Pt 1):4420–4425.
47. Титов К. С., Демидов Л. В., Шубина И. Ж., Хайленко В. А., Киселевский М. В., Вихрова А. С. Технологии клеточной иммунотерапии в лечении больных со злокачественными новообразованиями. Вестник РГМУ. 2014;1:42–47.
48. Schmidt-Wolf I. G., Negrin R. S., Kiem H. P., Blume K. G., Weissman I. L. Use of a SCID mouse/human lymphoma model to evaluate cytokine-induced killer cells with potent antitumor cell activity. J Exp Med. 1991 Jul 1;174(1):139–149. http://doi.org/10.1084/jem.174.1.139
49. Schmidt-Wolf I. G., Lefterova P., Mehta B. A., Fernandez L. P., Huhn D., Blume K. G., et al. Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993 Dec;21(13):1673–1679.
50. Leemhuis T., Wells S., Scheffold C., Edinger M., Negrin R. S. A phase I trial of autologous cytokine-induced killer cells for the treatment of relapsed Hodgkin disease and non-Hodgkin lymphoma. Biol Blood Marrow Transplant. 2005 Mar;11(3):181–187. http://doi.org/10.1016/j.bbmt.2004.11.019
51. Sangiolo D., Martinuzzi E., Todorovic M., Vitaggio K., Vallario A., Jordaney N., et al. Alloreactivity and anti-tumor activity segregate within two distinct subsets of cytokine-induced killer (CIK) cells: implications for their infusion across major HLA barriers. Int Immunol. 2008 Jul 1;20(7):841–848. http://doi.org/10.1093/intimm/dxn042
52. Lu P. H., Negrin R. S.. A novel population of expanded human CD3+CD56+ cells derived from T cells with potent in vivo antitumor activity in mice with severe combined immunodeficiency. J Immunol. 1994 Aug 15;153(4):1687–1696.
53. Verneris M. R., Ito M., Baker J., Arshi A., Negrin R. S., Shizuru J. A. Engineering hematopoietic grafts: purified allogeneic hematopoietic stem cells plus expanded CD8+ NK-T cells in the treatment of lymphoma. Biol Blood Marrow Transplant. 2001; 7(10):532–542. http://doi.org/10.1016/S1083–8791(01)70014–6
54. Thanendrarajan S., Nowak M., Abken H., SchmidtWolf I. G. H. Combining cytokine-induced killer cells with vaccination in cancer immunotherapy: more than one plus one? Leuk Res. 2011 Sep;35(9):1136–1142. http://doi.org/10.1016/j.leukres.2011.05.005
55. Schmidt-Wolf I. G., Finke S., Trojaneck B., Denkena A., Lefterova P., Schwella N., et al. Phase I clinical study applying autologous immunological effector cells transfected with the interleukin-2 gene in patients with metastatic renal cancer, colorectal cancer and lymphoma. Br J Cancer. 1999 Nov;81(6):1009–1016. http://doi.org/10.1038/sj.bjc.6690800
56. Introna M., Borleri G., Conti E., Franceschetti M., Barbui A. M., Broady R., et al. Repeated infusions of donor-derived cytokine-induced killer cells in patients relapsing after allogeneic stem cell transplantation: a phase I study. Haematologica. 2007 Jul;92(7):952–959. http://doi.org/10.3324/haematol.11132
57. Laport G. G., Sheehan K., Baker J., Armstrong R., Wong R. M., Lowsky R., et al. Adoptive immunotherapy with cytokine-induced killer cells for patients with relapsed hematologic malignancies after allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2011 Nov;17(11):1679–1687. http://doi.org/10.1016/j.bbmt.2011.05.012
58. Jiang J.-T., Shen Y.-P., Wu C.-P., Zhu Y.-B., Wei W.-X., Chen L.-J., et al. Increasing the frequency of CIK cells adoptive immunotherapy may decrease risk of death in gastric cancer patients. World J Gastroenterol. 2010 Dec 28;16(48):6155– 6162. http://doi.org/10.3748/wjg.v16.i48.6155
59. Jiang J., Wu C., Lu B. Cytokine-induced killer cells promote antitumor immunity. J Transl Med. 2013 Mar 28;11:83. http://doi.org/10.1186/1479–5876–11–83
60. Liu L., Zhang W., Qi X., Li H., Yu J., Wei S., et al. Randomized study of autologous cytokine-induced killer cell immunotherapy in metastatic renal carcinoma. Clin Cancer Res. 2012 Mar 15;18(6):1751–1759. http://doi.org/10.1158/1078–0432.CCR-11–2442
Рецензия
Для цитирования:
Шамова Т.В., Ситковская А.О., Ващенко Л.Н., Кечеджиева Э.Э. АДОПТИВНАЯ КЛЕТОЧНАЯ ТЕРАПИЯ: ДОСТИЖЕНИЯ ПОСЛЕДНИХ ЛЕТ. Южно-Российский онкологический журнал/ South Russian Journal of Cancer. 2020;1(1):43-59. https://doi.org/10.37748/2687-0533-2020-1-1-4
For citation:
Shamova T.V., Sitkovskaya A.O., Vashchenko L.N., Kechedzhieva E.E. ADOPTIVE CELL THERAPY: CURRENT ADVANCES. South Russian Journal of Cancer. 2020;1(1):43-59. (In Russ.) https://doi.org/10.37748/2687-0533-2020-1-1-4