О РАСШИРЕНИИ ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ МЫШЕЙ BALB/C NUDE ДЛЯ ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ЧЕЛОВЕКА IN VIVO
Аннотация
Об авторах
Г. В. ЖуковаРоссия
д.б.н., старший научный сотрудник испытательного лабораторного центра
SPIN: 1887-7415, AuthorID: 564827 Scopus Author ID: 7005456284 Researcher ID: Y-4243-2016
344037, Российская Федерация, г. Ростов-на-Дону, ул. 14-я линия, д. 63
А. И. Шихлярова
Россия
д.б.н., профессор, старший научный сотрудник испытательного лабораторного центра
SPIN: 6271–0717, Author ID: 6507723229
344037, Российская Федерация, г. Ростов-на-Дону, ул. 14-я линия, д. 63
А. Б. Сагакянц
Россия
к.б.н., доцент, руководитель лаборатории иммунофенотипирования опухолей
SPIN: 7272–1408, Author ID: 24329773900, Researcher ID: M-8378–2019
344037, Российская Федерация, г. Ростов-на-Дону, ул. 14-я линия, д. 63
Т. П. Протасова
Россия
к.б.н., научный сотрудник испытательного лабораторного центра
SPIN: 4542–3588, Author ID: 760427
344037, Российская Федерация, г. Ростов-на-Дону, ул. 14-я линия, д. 63
Список литературы
1. Williams JA. Using PDX for Preclinical Cancer Drug Discovery: The Evolving Field. J Clin Med. 2018 Mar 2; 7(3): 41. https://doi.org/10.3390/jcm7030041
2. De La Rochere P, Guil-Luna S, Decaudin D, Azar G, Sidhu SS, Piaggio E. Humanized Mice for the Study of Immuno-Oncology. Trends Immunol. 2018; 39(9): 748–763. https://doi.org/10.1016/j.it.2018.07.001
3. Wege AK. Humanized Mouse Models for the Preclinical Assessment of Cancer Immunotherapy. BioDrugs. 2018 Jun; 32(3): 245–66. https://doi.org/10.1007/s40259–018–0275–4
4. Huszthy PC, Daphu I, Niclou SP, Stieber D, Nigro JM, Sakariassen PØ, et al. In vivo models of primary brain tumors: pitfalls and perspectives. Neuro-oncology. 2012 Aug; 14(8): 979–993. https://doi.org/10.1093/neuonc/nos135
5. Morton JJ, Bird G, Refaeli Y, Jimeno A. Humanized Mouse Xenograft Models: Narrowing the Tumor-Microenvironment Gap. Cancer Res. 2016 Nov 01; 76(21): 6153–6158. https://doi.org/10.1158/0008–5472.CAN-16–1260
6. Murayama T, Gotoh N. Patient-Derived Xenograft Models of Breast Cancer and Their Application. Cells. 2019 Jun 20; 8(6): 621. https://doi.org/10.3390/cells8060621
7. Bracci L, Schiavoni G, Sistigu A, Belardelli F. Immune-based mechanisms of cytotoxic chemotherapy: implications for the design of novel and rationale-based combined treatments against cancer. Cell Death Differ. 2014 Jan; 21(1): 15–25. https://doi.org/10.1038/cdd.2013.67
8. Huszthy PC, Sakariassen PØ, Espedal H, Brokstad KA, Bjerkvig R, Miletic H. Engraftment of Human Glioblastoma Cells in Immunocompetent Rats through Acquired Immunosuppression. PLoS ONE. 2015; 10(8): e0136089. https://doi.org/10.1371/journal.pone.0136089
9. Трещалина Е. М. Иммунодефицитные мыши Balb/c nude и моделирование различных вариантов опухолевого роста для доклинических исследований. Российский биотерапевтический журнал. 2017; 16(3): 6–13. https://doi.org/10.17650/1726–9784–2017–16–3-6–13
10. Tsoneva D, Minev B, Frentzen A, Zhang Q, Wege AK, Szalay AA. Humanized Mice with Subcutaneous Human Solid Tumors for Immune Response Analysis of Vaccinia Virus-Mediated Oncolysis. Mol Ther Oncolytics. 2017 Jun 16; 5: 41–61. https://doi.org/10.1016/j.omto.2017.03.001
11. Ridge SM, Sullivan FJ, Glynn SA. Mesenchymal stem cells: key players in cancer progression. Mol Cancer. 2017 Feb 1; 16(1): 31. https://doi.org/10.1186/s12943–017–0597–8
12. Wu C-G, Zhang J-C, Xie C-Q, Parolini O, Silini A, Huang Y-Z, et al. In vivo tracking of human placenta derived mesenchymal stem cells in nude mice via 14C-TdR labeling. BMC Biotechnol. 2015 Jun 13; 15: 55. https://doi.org/10.1186/s12896–015–0174–4
13. Chen P, Huang Y, Womer KL. Effects of mesenchymal stromal cells on human myeloid dendritic cell differentiation and maturation in a humanized mouse model. J Immunol Methods. 2015 Dec; 427: 100–104. https://doi.org/10.1016/j.jim.2015.10.008
14. Pacioni S, D’Alessandris QG, Giannetti S, Morgante L, Coccè V, Bonomi A, et al. Human mesenchymal stromal cells inhibit tumor growth in orthotopic glioblastoma xenografts. Stem Cell Res Ther. 2017 Mar 9; 8(1): 53. https://doi.org/10.1186/s13287–017–0516–3
15. Gao T, Yu Y, Cong Q, Wang Y, Sun M, Yao L, et al. Human mesenchymal stem cells in the tumour microenvironment promote ovarian cancer progression: the role of platelet-activating factor. BMC Cancer. 2018 Oct 19; 18(1): 999. https://doi.org/10.1186/s12885–018–4918–0
16. Wabitsch S, Benzing C, Krenzien F, Splith K, Haber PK, Arnold A, et al. Human Stem Cells Promote Liver Regeneration After Partial Hepatectomy in BALB/C Nude Mice. Journal of Surgical Research. 2019 Jul 1; 239: 191–200. https://doi.org/10.1016/j.jss.2019.02.010
17. Soria B, Martin-Montalvo A, Aguilera Y, Mellado-Damas N, López-Beas J, Herrera-Herrera I, et al. Human Mesenchymal Stem Cells Prevent Neurological Complications of Radiotherapy. Front Cell Neurosci. 2019; 13: 204. https://doi.org/10.3389/fncel.2019.00204
18. Bajetto A, Pattarozzi A, Corsaro A, Barbieri F, Daga A, Bosio A, et al. Different effects of human umbilical cord mesenchymal stem cells on glioblastoma stem cells by direct cell interaction or via released soluble factors. Frontiers in Cellular Neuroscience. 2017 Oct 13; 11: 312. https://doi.org/10.3389/fncel.2017.00312
19. Li J-H, Fan W-S, Wang M–M, Wang Y-H, Ren Z-G. Effects of mesenchymal stem cells on solid tumor metastasis in experimental cancer models: a systematic review and meta-analysis. J Transl Med. 2018 Apr 27; 16(1): 113. https://doi.org/10.1186/s12967–018–1484–9
20. DeRose YS, Wang G, Lin Y-C, Bernard PS, Buys SS, Ebbert MTW, et al. Tumor grafts derived from women with breast cancer authentically reflect tumor pathology, growth, metastasis and disease outcomes. Nat Med. 2011 Oct 23; 17(11): 1514–1520. https://doi.org/10.1038/nm.2454
21. Bjerkvig R, Tønnesen A, Laerum OD, Backlund EO. Multicellular tumor spheroids from human gliomas maintained in organ culture. J Neurosurg. 1990 Mar; 72(3): 463–475. https://doi.org/10.3171/jns.1990.72.3.0463
22. van de Vijver MJ, He YD, van’t Veer LJ, Dai H, Hart AAM, Voskuil DW, et al. A gene-expression signature as a predictor of survival in breast cancer. N Engl J Med. 2002 Dec 19; 347(25): 1999–2009. https://doi.org/0.1056/NEJMoa021967
23. Naus CC, Aftab Q, Sin WC. Common mechanisms linking connexin43 to neural progenitor cell migration and glioma invasion. Seminars in Cell & Developmental Biology. 2016 Feb 1; 50: 59–66. https://doi.org/10.1016/j.semcdb.2015.12.008
24. Сепиашвили Р. И. Иммунная система мозга и спинномозговой жидкости. Аллергология и иммунология. 2013; 14(4): 241–253.
Рецензия
Для цитирования:
Жукова Г.В., Шихлярова А.И., Сагакянц А.Б., Протасова Т.П. О РАСШИРЕНИИ ВАРИАНТОВ ИСПОЛЬЗОВАНИЯ МЫШЕЙ BALB/C NUDE ДЛЯ ЭКСПЕРИМЕНТАЛЬНОГО ИЗУЧЕНИЯ ЗЛОКАЧЕСТВЕННЫХ ОПУХОЛЕЙ ЧЕЛОВЕКА IN VIVO. Южно-Российский онкологический журнал/ South Russian Journal of Cancer. 2020;1(2):28-35. https://doi.org/10.37748/2687-0533-2020-1-2-4
For citation:
Zhukova G.V., Shikhliarova A.I., Sagakyants A.B., Protasova T.P. ABOUT EXPANDING OPTIONS FOR USING BALB/C NUDE MICE FOR EXPERIMENTAL STUDY OF HUMAN MALIGNANT TUMORS IN VIVO. South Russian Journal of Cancer. 2020;1(2):28-35. https://doi.org/10.37748/2687-0533-2020-1-2-4