Preview

Южно-российский онкологический журнал

Расширенный поиск

Первичные культуры опухолевых клеток: современные методы получения и поддержания in vitro

https://doi.org/10.37748/2687-0533-2020-1-3-4

Полный текст:

Аннотация

В течение последних десятилетий перевиваемые клеточные линии являлись доступной моделью для изучения биологии и влияния химиотерапевтических препаратов на опухоли. Однако, многочисленные исследования показали, что данные клеточные линии недостаточно гетерогенны и не могут отражать лекарственную резистентность опухолей, возникающую у некоторых пациентов. Культуры первичных клеточных линий, выделенные из солидных опухолей, получили значительное распространение для определения химиочувствительности опухолей к препаратам, применяемым в химиотерапии. В данном обзоре рассматриваются основные методы получения и культивирования первичных клеточных линий. Дается краткая характеристика методикам дезагрегации опухолевого материала при помощи ферментативной, химической и механической диссоциации. Рассмотрены различные системы культивирования первичных клеточных культур. Выбор подходящего метода диссоциации и культивирования имеет важное значение для сохранения преимуществ первичной культуры в доклинических исследованиях.

Об авторах

И. В. Межевова
ФГБУ «НМИЦ онкологии» Минздрава России
Россия

Межевова Ирина Валентиновна – младший научный сотрудник Лаборатории клеточных технологий. SPIN: 3367-1741, AuthorID: 1011695, ResearcherID: AAI-1860-2019

344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63



А. О. Ситковская
ФГБУ «НМИЦ онкологии» Минздрава России
Россия

Ситковская Анастасия Олеговна – ВРИО заведующей Лаборатории клеточных технологий. SPIN: 1659-6976, AuthorID: 791081, Scopus Author ID: 56381527400, ResearcherID: E-7496-2018

344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63



О. И. Кит
ФГБУ «НМИЦ онкологии» Минздрава России
Россия

Кит Олег Иванович – член-корр. РАН, д.м.н., профессор, генеральный директор. SPIN: 1728-0329, AuthorID: 343182, Scopus Author ID: 55994103100, ResearcherID: U-2241-2017

344037, г. Ростов-на-Дону, ул. 14-я линия, д. 63



Список литературы

1. Фрешни Р. Я. Культура животных клеток. Практическое руководство. Перевод с 5 - го английского издания. Москва: Бином. Лаборатория знаний, 2011.

2. Leithner K, Wohlkoenig C, Stacher E, Lindenmann J, Hofmann NA, Gallé B, et al. Hypoxia increases membrane metallo- endopeptidase expression in a novel lung cancer ex vivo model — role of tumor stroma cells. BMC Cancer. 2014 Jan 25;14:40. https://doi.org/10.1186/1471–2407–14–40

3. Hanahan D, Coussens LM. Accessories to the crime: functions of cells recruited to the tumor microenvironment. Cancer Cell. 2012 Mar 20;21(3):309–322. https://doi.org/10.1016/j.ccr.2012.02.022

4. Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017 Oct;14(10):611–629. https://doi.org/10.1038/nrclinonc.2017.44

5. Hirata E, Sahai E. Tumor Microenvironment and Differential Responses to Therapy. Cold Spring Harb Perspect Med. 2017 Jul 5;7(7). https://doi.org/10.1101/cshperspect.a026781

6. Mitra A, Mishra L, Li S. Technologies for deriving primary tumor cells for use in personalized cancer therapy. Trends Biotechnol. 2013 Jun;31(6):347–354. https://doi.org/10.1016/j.tibtech.2013.03.006

7. Li W-C, Ralphs KL, Tosh D. Isolation and culture of adult mouse hepatocytes. Methods Mol Biol. 2010;633:185–196. https://doi.org/10.1007/978–1–59745–019–5_13

8. Janik K, Popeda M, Peciak J, Rosiak K, Smolarz M, Treda C, et al. Efficient and simple approach to in vitro culture of primary epithelial cancer cells. Biosci Rep. 2016;36(6). https://doi.org/10.1042/BSR20160208

9. Volovitz I, Shapira N, Ezer H, Gafni A, Lustgarten M, Alter T, et al. A non-aggressive, highly efficient, enzymatic method for dissociation of human brain-tumors and brain-tissues to viable single- cells. BMC Neurosci. 2016 Jun 1;17(1):30. https://doi.org/10.1186/s12868–016–0262-y

10. Skog M, Sivlér P, Steinvall I, Aili D, Sjöberg F, Elmasry M. The Effect of Enzymatic Digestion on Cultured Epithelial Autografts. Cell Transplant. 2019;28(5):638–644. https://doi.org/10.1177/0963689719833305

11. Nishikata T, Ishikawa M, Matsuyama T, Takamatsu K, Fukuhara T, Konishi Y. Primary culture of breast cancer: a model system for epithelial- mesenchymal transition and cancer stem cells. Anticancer Res. 2013 Jul;33(7):2867–2874.

12. Spaethling JM, Na Y-J, Lee J, Ulyanova AV, Baltuch GH, Bell TJ, et al. Primary Cell Culture of Live Neurosurgically Resected Aged Adult Human Brain Cells and Single Cell Transcriptomics. Cell Rep. 2017 17;18(3):791–803. https://doi.org/10.1016/j.celrep.2016.12.066

13. Mederacke I, Dapito DH, Affò S, Uchinami H, Schwabe RF. High-yield and high-purity isolation of hepatic stellate cells from normal and fibrotic mouse livers. Nat Protoc. 2015 Feb;10(2):305–315. https://doi.org/10.1038/nprot.2015.017

14. Castell JV, Gómez- Lechón MJ. Liver cell culture techniques. Methods Mol Biol. 2009;481:35–46. https://doi.org/10.1007/978–1–59745–201–4_4

15. Ribatti D. A milestone in the study of the vascular system: Wilhelm Roux’s doctoral thesis on the bifurcation of blood vessels. Haematologica. 2002 Jul;87(7):677–678.

16. Damm G, Schicht G, Zimmermann A, Rennert C, Fischer N, Kießig M, et al. Effect of glucose and insulin supplementation on the isolation of primary human hepatocytes. EXCLI J. 2019;18:1071–1091. https://doi.org/10.17179/excli2019–1782

17. Trojaneck B, Niemitz S, Micka B, Lefterova P, Blasczyk R, Scheffold C, et al. Establishment and characterization of colon carcinoma and renal cell carcinoma primary cultures. Cancer Biother Radiopharm. 2000 Apr;15(2):169–174. https://doi.org/10.1089/cbr.2000.15.169

18. Krbala L, Soukup J, Stanislav J, Hanusova V. Derivation and basic characterization of colorectal carcinoma primary cell lines. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2017 Dec;161(4):360–368. https://doi.org/10.5507/bp.2017.040

19. Cunningham RE. Tissue disaggregation. Methods Mol. Biol. 2010;588:327–330. https://doi.org/10.1007/978–1–59745–324–0_32

20. Skarkova V, Krupova M, Vitovcova B, Skarka A, Kasparova P, Krupa P, et al. The Evaluation of Glioblastoma Cell Dissociation and Its Influence on Its Behavior. Int J Mol Sci. 2019 Sep 18;20(18):4630. https://doi.org/10.3390/ijms20184630

21. Qiu X, De Jesus J, Pennell M, Troiani M, Haun JB. Microfluidic device for mechanical dissociation of cancer cell aggregates into single cells. Lab Chip. 2015 Jan 7;15(1):339–350. https://doi.org/10.1039/c4lc01126k

22. Kar R, Chawla D, Gupta B, Mehndiratta M, Wadhwa N, Agarwal R. Establishment of Primary Cell Culture From Ascitic Fluid and Solid Tumor Obtained From Epithelial Ovarian Carcinoma Patients. Int J Gynecol Cancer. 2017;27(9):20002005. https://doi.org/10.1097/igc.0000000000001087

23. Филиппова С.Ю., Ситковская А.О., Сагакянц А.Б., Бондаренко Е.С., Ващенко Л.Н., Кечеджиева Э.Э. и др. Выделение опухолевых стволовых клеток рака молочной железы с применением коллагеназы. Современные проблемы науки и образования. 2019;6:147.

24. Межевова И.В., Ситковская А.О., Росторгуев Э.Е., Филиппова С.Ю., Нистратова О.В., Кузнецова Н.С. и др. Нейрохирургический подход для получения первичных клеточных линий глиальных опухолей. Исследования и практика в медицине. 2019;6(S):191.

25. Kapałczyńska M, Kolenda T, Przybyła W, Zajączkowska M, Teresiak A, Filas V, et al. 2D and 3D cell cultures — a comparison of different types of cancer cell cultures. Arch Med Sci. 2018 Jun;14(4):910–919. https://doi.org/10.5114/aoms.2016.63743

26. Burdett E, Kasper FK, Mikos AG, Ludwig JA. Engineering tumors: a tissue engineering perspective in cancer biology. Tissue Eng Part B Rev. 2010 Jun;16(3):351–359. https://doi.org/10.1089/ten.teb.2009.0676

27. Sant S, Johnston PA. The production of 3D tumor spheroids for cancer drug discovery. Drug Discov Today Technol. 2017 Mar;23:27–36. https://doi.org/10.1016/j.ddtec.2017.03.002

28. Jørgensen A, Young J, Nielsen JE, Joensen UN, Toft BG, Rajpert- De Meyts E, et al. Hanging drop cultures of human testis and testis cancer samples: a model used to investigate activin treatment effects in a preserved niche. Br J Cancer. 2014 May 13;110(10):2604–2014. https://doi.org/10.1038/bjc.2014.160

29. Foty R. A simple hanging drop cell culture protocol for generation of 3D spheroids. J Vis Exp. 2011 May 6;(51). https://doi.org/10.3791/2720

30. Jeppesen M, Hagel G, Glenthoj A, Vainer B, Ibsen P, Harling H, et al. Short-term spheroid culture of primary colorectal cancer cells as an in vitro model for personalizing cancer medicine. PLoS ONE. 2017;12(9): e0183074. https://doi.org/10.1371/journal.pone.0183074

31. Ahmad A. Breast Cancer Metastasis and Drug Resistance. Challenges and Progress. Advances in Experimental Medicine and Biology. 2019;1115:1–7. https://doi.org/10.1007/978–3–030–20301–6

32. Lombardo Y, de Giorgio A, Coombes CR, Stebbing J, Castellano L. Mammosphere formation assay from human breast cancer tissues and cell lines. J Vis Exp. 2015 Mar 22;(97): 52671. https://doi.org/10.3791/52671

33. Hoffmann O, Ditsch N, Ahne M, Arnold F, Paepke S, et al. Testing chemotherapy efficacy in HER2 negative breast cancer using patient- derived spheroids. J Transl Med. 2016;14(1):112. https://doi.org/10.1186/s12967–016–0855–3

34. Qureshi- Baig K, Ullmann P, Rodriguez F, Frasquilho S, Nazarov PV, Haan S, et al. What Do We Learn from Spheroid Culture Systems? Insights from Tumorspheres Derived from Primary Colon Cancer Tissue. PLoS ONE. 2016;11(1): e0146052. https://doi.org/10.1371/journal.pone.0146052

35. Weiswald L-B, Bellet D, Dangles- Marie V. Spherical cancer models in tumor biology. Neoplasia. 2015 Jan;17(1):1–15. https://doi.org/10.1016/j.neo.2014.12.004

36. Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, et al. Three-dimensional in vitro co-culture model of breast tumor using magnetic levitation. Sci Rep. 2014 Oct 1;4:6468. https://doi.org/10.1038/srep06468

37. Hoarau- Véchot J, Rafii A, Touboul C, Pasquier J. Halfway between 2D and Animal Models: Are 3D Cultures the Ideal Tool to Study Cancer- Microenvironment Interactions? Int J Mol Sci. 2018 Jan 18;19(1):181. https://doi.org/10.3390/ijms19010181

38. Kleinman HK, Martin GR. Matrigel: basement membrane matrix with biological activity. Semin Cancer Biol. 2005 Oct;15(5):378–386. https://doi.org/10.1016/j.semcancer.2005.05.004

39. Doyle AD, Carvajal N, Jin A, Matsumoto K, Yamada KM. Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility- dependent adhesions. Nat Commun. 2015 Nov 9;6:8720. https://doi.org/10.1038/ncomms9720

40. Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009 Jul 1;103(4):655–663. https://doi.org/10.1002/bit.22361

41. Tokuda EY, Jones CE, Anseth KS. PEG-peptide hydrogels reveal differential effects of matrix microenvironmental cues on melanoma drug sensitivity. Integr Biol (Camb). 2017 23;9(1):76–87. https://doi.org/10.1039/c6ib00229c

42. Yu M, Jambhrunkar S, Thorn P, Chen J, Gu W, Yu C. Hyaluronic acid modified mesoporous silica nanoparticles for targeted drug delivery to CD44 - overexpressing cancer cells. Nanoscale. 2013 Jan 7;5(1):178–183. https://doi.org/10.1039/c2nr32145a

43. De T, Goyal S, Balachander G, Chatterjee K, Kumar P, Babu K G, et al. A Novel Ex Vivo System Using 3D Polymer Scaffold to Culture Circulating Tumor Cells from Breast Cancer Patients Exhibits Dynamic E-M Phenotypes. J Clin Med. 2019 Sep 16;8(9):1473. https://doi.org/10.3390/jcm8091473

44. Nayak B, Balachander GM, Manjunath S, Rangarajan A, Chatterjee K. Tissue mimetic 3D scaffold for breast tumorderived organoid culture toward personalized chemotherapy. Colloids Surf B Biointerfaces. 2019 Aug 1;180:334–343. https://doi.org/10.1016/j.colsurfb.2019.04.056

45. Nath S, Devi GR. Three-dimensional culture systems in cancer research: Focus on tumor spheroid model. Pharmacol Ther. 2016;163:94–108. https://doi.org/10.1016/j.pharmthera.2016.03.013

46. Whitesides GM. The origins and the future of microfluidics. Nature. 2006 Jul 27;442(7101):368–373. https://doi.org/10.1038/nature05058

47. Ataç B, Wagner I, Horland R, Lauster R, Marx U, Tonevitsky AG, et al. Skin and hair on-a-chip: in vitro skin models versus ex vivo tissue maintenance with dynamic perfusion. Lab Chip. 2013 Sep 21;13(18):3555–3561. https://doi.org/10.1039/c3lc50227a

48. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. Reconstituting organ- level lung functions on a chip. Science. 2010 Jun 25;328(5986):1662–1668. https://doi.org/10.1126/science.1188302

49. Powers MJ, Domansky K, Kaazempur- Mofrad MR, Kalezi A, Capitano A, Upadhyaya A, et al. A microfabricated array bioreactor for perfused 3D liver culture. Biotechnol Bioeng. 2002 May 5;78(3):257–269. https://doi.org/10.1002/bit.10143

50. Kimura H, Yamamoto T, Sakai H, Sakai Y, Fujii T. An integrated microfluidic system for long-term perfusion culture and on-line monitoring of intestinal tissue models. Lab Chip. 2008 May;8(5):741–746. https://doi.org/10.1039/b717091b

51. Patra B, Peng C–C, Liao W-H, Lee C-H, Tung Y-C. Drug testing and flow cytometry analysis on a large number of uniform sized tumor spheroids using a microfluidic device. Sci Rep. 2016 Feb 15;6:21061. https://doi.org/10.1038/srep21061

52. Shwetha HR, Kotrashetti VS, Babu NC, Kumbar V, Bhat K, Reddy R. Ex vivo culture of oral keratinocytes using direct explant cell culture technique. J Oral Maxillofac Pathol. 2019 Aug;23(2):243–247. https://doi.org/10.4103/jomfp.JOMFP_105_19

53. Goldman A, Khiste S, Freinkman E, Dhawan A, Majumder B, Mondal J, et al. Targeting tumor phenotypic plasticity and metabolic remodeling in adaptive cross-drug tolerance. Sci Signal. 2019 20;12(595). https://doi.org/10.1126/scisignal.aas8779

54. Baird JR, Bell RB, Troesch V, Friedman D, Bambina S, Kramer G, et al. Evaluation of Explant Responses to STING Ligands: Personalized Immunosurgical Therapy for Head and Neck Squamous Cell Carcinoma. Cancer Res. 2018 01;78(21):6308–6319. https://doi.org/10.1158/0008–5472.can-18–1652

55. Muff R, Botter SM, Husmann K, Tchinda J, Selvam P, SeeliMaduz F, et al. Explant culture of sarcoma patients’ tissue. Lab Invest. 2016;96(7):752–762. https://doi.org/10.1038/labinvest.2016.49

56. Mutuku SM, Trim PJ, Prabhala BK, Irani S, Bremert KL, Logan JM, et al. Evaluation of Small Molecule Drug Uptake in Patient- Derived Prostate Cancer Explants by Mass Spectrometry. Sci Rep. 2019 18;9(1):15008. https://doi.org/10.1038/s41598–019–51549–3

57. Centenera MM, Hickey TE, Jindal S, Ryan NK, Ravindranathan P, Mohammed H, et al. A patient- derived explant (PDE) model of hormone- dependent cancer. Mol Oncol. 2018;12(9):16081622. https://doi.org/10.1002/1878–0261.12354

58. Ricciardelli C, Lokman NA, Sabit I, Gunasegaran K, Bonner WM, Pyragius CE, et al. Novel ex vivo ovarian cancer tissue explant assay for prediction of chemosensitivity and response to novel therapeutics. Cancer Lett. 2018 01;421:51–58. https://doi.org/10.1016/j.canlet.2018.02.006

59. Karekla E, Liao W-J, Sharp B, Pugh J, Reid H, Quesne JL, et al. Ex Vivo Explant Cultures of Non- Small Cell Lung Carcinoma Enable Evaluation of Primary Tumor Responses to Anticancer Therapy. Cancer Res. 2017 15;77(8): 2029–2039. https://doi.org/10.1158/0008–5472.can-16–1121


Для цитирования:


Межевова И.В., Ситковская А.О., Кит О.И. Первичные культуры опухолевых клеток: современные методы получения и поддержания in vitro. Южно-российский онкологический журнал. 2020;1(3):36-49. https://doi.org/10.37748/2687-0533-2020-1-3-4

For citation:


Mezhevova I.V., Sitkovskaya A.O., Kit O.I. Primary tumor cell cultures: сurrent methods of obtaining and subcultivation. South Russian Journal of Cancer. 2020;1(3):36-49. https://doi.org/10.37748/2687-0533-2020-1-3-4

Просмотров: 82


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2687-0533 (Print)
ISSN 2686-9039 (Online)